
OMAPL138 Software Developers Guide
Translate this page to Translate Show original

Contents

1 Welcome to the OMAP-L138 Software Developer's Guide•
2 Starting your software development

2.1 Setting up the DVSDK♦
2.2 Writing your own "Hello World!" application and executing
it on the target

♦

•

3 Running the pre-installed applications on the target file system
3.1 Running the DSPLink examples♦
3.2 Running the C6Run Example Applications

3.2.1 Setup◊
3.2.2 C6RunApp Examples◊
3.2.3 C6RunLib Example◊
3.2.4 For More Info◊

♦

3.3 Running the C6Accel apps♦
3.4 Running the DMAI apps

3.4.1 Audio◊
3.4.2 Display◊
3.4.3 Video◊
3.4.4 Speech◊
3.4.5 Image◊

♦

3.5 Running the Qt/Embedded examples♦
3.6 Running GStreamer pipelines♦
3.7 Running the Audio SOC example♦

•

4 DVSDK software overview and support
4.1 TI Worldwide Technical Support♦
4.2 Creating a Linux application♦
4.3 Creating a DSPLink application♦
4.4 Creating a C6Run application♦
4.5 Creating a C6Accel application♦
4.6 Creating a DMAI multimedia application♦
4.7 Creating a Qt/Embedded application♦
4.8 Creating a GStreamer application♦

•

5 Additional Procedures
5.1 Setting up cross compilation environment♦
5.2 Rebuilding the DVSDK components♦
5.3 Creating your own Linux kernel image♦
5.4 Setting up Tera Term♦
5.5 Flashing boot loader using serial flash utility♦
5.6 How to copy the kernel image to SPI Flash♦
5.7 Integrating a new Codec in the OMAPL138 DVSDK♦
5.8 How to create an SD card♦
5.9 Setting up Bluetooth and Wireless LAN demo♦

•

6 GPLv3 Disclaimer•

OMAPL138 Software Developers Guide

OMAPL138 Software Developers Guide 1

7 Additional Resources
7.1 PSP Documentation♦
7.2 Wireless LAN, Bluetooth and Crypto♦
7.3 Matrix Application launcher♦
7.4 Miscellaneous♦

•

Welcome to the OMAP-L138 Software Developer's
Guide
Thanks you for choosing the OMAP-L138 Evaluation Module (EVM) for your application. The purpose of
this guide is to get you going with developing software for the OMAP-L138 on a Linux development host
only.

Note! This Software Developer's Guide (SDG) supports version 4.xx of the OMAP-L138 DVSDK which is
only for Linux host development.

Note! This guide assumes you have already followed the Quick Start Guide (QSG) for setting up your EVM
and installing the Digital Video Software Development Kit (DVSDK). If you have not done this yet, please do
so now before continuing. You can find a hard copy contained with your EVM. Alternatively you can find the
QSG PDF and various other documentation in the 'docs' directory of the DVSDK installation directory.

Note! All instructions in this guide are for Ubuntu 10.04 LTS. At this time, it is the only supported Linux host
distribution for development.

Note! In previous DVSDK releases there has been a Getting Started Guide explaining how to set up the
DVSDK. This document replaces and extends the Getting Started Guide for DVSDK 4.xx.

Throughout this document there will be commands spelled out to execute. Some are to be executed on the
Linux development host, some on the Linux target and some on the u-boot (bootloader) prompt. They are
distinguished by different command prompts as follows:

host $ <this command is to be executed on the host>
target # <this command is to be executed on the target>
u-boot :> <this command is to be executed on the u-boot prompt>

Starting your software development
Your DVSDK should be installed before you continue. Throughout this document it will be assumed you have
an environment variable DVSDK which points to where your DVSDK is installed. You can set it as follows
(the following assumes that DVSDK was installed at default location):

host $ export DVSDK="${HOME}/ti-dvsdk_omapl138-evm_xx_xx_xx_xx"

Setting up the DVSDK

The DVSDK comes with a script for setting up your Ubuntu 10.04 LTS development host as well as your
target boot environment. It is an interactive script, but if you accept the defaults by pressing return you will
use the recommended settings. This is recommended for first time users. Note that this script requires internet
access as it will update your Ubuntu Linux development host with the packages required to develop using the

OMAPL138 Software Developers Guide

 Starting your software development 2

http://releases.ubuntu.com/10.04

DVSDK. Before executing the script make also sure that the SD card received with the EVM or an SD card
prepared as described in the section below "How to create an SD card" is inserted in the EVM SD card reader.

Execute the script using:

host $ ${DVSDK}/setup.sh

If you accepted the defaults during the setup process, you will now have set up your development host and
target to:

Boot the Linux kernel from your development host using TFTP. On your development host the Linux
kernel is fetched from /tftpboot by default.

1.

Boot the Linux file system from your development host using a Network File System (NFS). On your
development host the Linux target file system is located at ${HOME}/targetfs

2.

Minicom is set up to communicate with the target over RS-232. If you want to use a windows host for
connecting to the target instead, see the #Setting_up_Tera_Term section.

3.

If you start minicom on your Linux development host using minicom -w (or Tera Term on Windows) and
power cycle the EVM, Linux will boot.

After Linux boots up, login into the target using root as the login name.

Note! The Matrix Application Launcher GUI is not launched automatically in the development filesystem. If
you would like to start it, execute the following command on the target board:

target # /etc/init.d/matrix-gui-e start

If your kit includes an LCD display, the first time the Matrix GUI is executed from NFS, you'll go through a
LCD touchscreen calibration process. The calibration process is important as other application in additional to
the Matrix GUI require calibration to run successfully. You can also run the calibration manually without
starting the Matrix GUI by executing the following command on the target board:

target # ts_calibrate

If the Matrix is running, make sure you have terminated the Matrix GUI before running any other applications
from the command line:

target # /etc/init.d/matrix-gui-e stop

Note! if you select the "Primary display output" to DVI, then you might be required to have mouse support to
work with graphical user interface, you must first clear these variables prior to running the demos to enable
the mouse:

target # export QWS_MOUSE_PROTO=

target # export TSLIB_TSDEVICE=

Writing your own "Hello World!" application and executing
it on the target

OMAPL138 Software Developers Guide

Setting up the DVSDK 3

This section shows how to create/build an application on your host development PC and execute a basic Linux
application on your booted target filesystem.

1. Create your own work directory on the host PC and enter it:

host $ mkdir ${HOME}/workdir
host $ cd ${HOME}/workdir

2. Create a new C source file:

host $ gedit helloworld.c

Enter the following source code:

#include <stdio.h>

int main()
{
 printf("Hello World!\n");
}

Save the file and exit.

3. Create a basic makefile:

host $ gedit Makefile

Enter the following:

Import the variables from the DVSDK so that you can find the DVSDK components
include ${DVSDK}/Rules.make

helloworld:
Make sure that you use a tab below
 $(CSTOOL_PREFIX)gcc -o helloworld helloworld.c

Save the file and exit. Note that the gap before $(CSTOOL_PREFIX)gcc corresponds to a tab. If it is filled
with spaces instead you will get build errors.

4. Make sure the $DVSDK variable is still set using:

host $ echo $DVSDK

This command should print your DVSDK installation directory. If it doesn't, you will have to set it again as
described in the beginning of this document. Compile the application:

host $ make helloworld

As a result, an executable called helloworld is generated in ${HOME}/workdir

5. You now have your own application, but you need to create a directory and copy it to your NFS exported
filesystem to make it visible by the target:

host $ mkdir ${HOME}/targetfs/home/root/omapl138

OMAPL138 Software Developers Guide

Writing your own "Hello World!" application and executingit on the target 4

host $ cp helloworld ${HOME}/targetfs/home/root/omapl138

6. On your target this application will be accessible from /home/root/omapl138/helloworld.
Execute it on your target:

target # /home/root/omapl138/helloworld

You should now see the following output:

Hello World!

Congratulations! You now have your own basic application running on the target.

Running the pre-installed applications on the
target file system
The filesystem comes with a number of prebuilt applications (which can be rebuilt inside the DVSDK). This
section shows how to execute those applications in the provided filesystem.

A system wide loadmodule script is provided in the filesystem. This script loads the various TI kernel
modules as part of the Linux init process which are needed by the various applications provided in the
filesystem. The file can be found in the following location on the target:

•

target # vi /etc/init.d/loadmodule-rc

The script leverages a new feature of CMEM 2.0 to use general purpose heaps instead of specific pools. More
information on this can found in the CMEM Overview on TI's embedded processor wiki page.

You can use the load/unload/restart parameter to load and unload the various TI kernel modules at any time by
executing the following on the target:

target # /etc/init.d/loadmodule-rc start|stop|restart

Running the DSPLink examples

The DSPLink comes with a few sample application. To run them enter this directory on the target

target # cd /usr/share/ti/ti-dsplink-examples/

Execute the following script to run the example application

target # ./ti-dsplink-examples-run.sh

The target terminal window will output the results of the examples executed. The examples can be run
individually (vi ti-dsplink-examples-run.sh for proper parameters to individual examples).

OMAPL138 Software Developers Guide

 Running the pre-installed applications on the target file system 5

http://processors.wiki.ti.com/index.php/CMEM_Overview

Running the C6Run Example Applications

The C6run package comes with example and test applications to demonstrate its functionality. Most
applications exist as ARM version (ending in "_arm") and a DSP version (ending in "_dsp"), compiled from
the same source. The intent of the two versions is to show that the same code running on the two different
processors behaves the same. To run the applications, enter the following directory on the target:

target # cd /usr/share/ti/c6run-apps/

Setup

We'll unload and then re-load the necessary kernel modules needed by the application. If other applications
haven't previous loaded any of the modules (CMEM, DSPLink, potentially LPM as well), unloading the
modules will not be necessary (but it won't hurt either).

target # ./unloadmodules.sh
target # ./loadmodules.sh

C6RunApp Examples

Enter into the examples/c6runapp directory. This directory contains examples that use the c6runapp tool to
move an entire app (starting with main() function) to the DSP. List the directory content to see all the example
provided on the filesystem.

target # cd examples/c6runapp
target # ls

Run the following commands to execute a simple "hello world" example. The first one runs completely on the
ARM, while the second one is executed on the DSP (but results are passed back to the ARM for display on the
Linux console).

target # cd hello_world
target # ./hello_world_arm
target # ./hello_world_dsp

Move to the emqbit directory and run the applications there. These applications are floating point
benchmarking examples. Note that on different platforms the ARM and DSP cores have differing support for
floating point operations, so results may vary.

target # cd ../emqbit
target # ./bench_arm
target # ./bench_dsp
target # ./cfft_arm
target # ./cfft_dsp

C6RunLib Example

Next move to the c6runlib emqbit example directory and run the applications there. This example is different
from the above emqbit example, in that the application, built using c6runlib and the ARM GCC compiler, is
partitioned between the ARM core and the DSP core. Data buffers are allocated on the ARM core and passed
to the DSP where they are operated on. This adds overhead to the execution process compared to the c6runapp
case above, where allocation and operation happened on the same core.

OMAPL138 Software Developers Guide

 Running the C6Run Example Applications 6

target # cd ../../c6runlib/emqbit
target # ./bench_arm
target # ./bench_dsp
target # ./cfft_arm
target # ./cfft_dsp

Note: The c6run application required a larger CMEM block thus using the components provided loadmodule
script was required to successfully run the application. To revert back to using the system-wide TI CMEM
kernel module configuration settings run the following command on the target. This is required for successful
run of the various other applications:

target # /etc/init.d/loadmodule-rc restart

For More Info

If you are interested in how these example are built and what the source code looks like, please look in the
'examples' directory of the C6Run source package. There are also a collection of test cases that can be
examined in the 'test' directory of the source package.

Details on the C6Run usage can be found on the TI embedded processor wiki.

Running the C6Accel apps

The C6Accel package comes with a small test application benchmarks all the DSP kernel APIs for fixed point
and floating point calculations. To run the application, enter the following directory on the target:

target # cd /usr/share/ti/c6accel-apps/

Load the C6Accel specific kernel modules:

target # ./loadmodules_omapl138_c6accel.sh

Execute the following command to run the example application

target # ./c6accel_app

The application benchmarks all the DSP kernel API calls in C6Accel and writes the benchmark data to file
(benchmarking.txt) in the /usr/share/ti/c6accel-apps directory. To view the file, execute

target # vi /usr/share/ti/c6accel-apps/benchmarking.txt

Running the DMAI apps

The Davinci Multimedia Application Interface (DMAI) comes with small sample applications (including
source code). Refrain from using Ctrl-C to terminate applications as un-expected results may occur. To run
them enter this directory on the target:

target # cd /usr/share/ti/ti-dmai-apps/

Then, load the kernel modules:

target # /etc/init.d/loadmodule-rc restart

OMAPL138 Software Developers Guide

C6RunLib Example 7

http://processors.wiki.ti.com/index.php/C6Run_Project

The DVSDK comes with DMAI, and the following example invocations are known to work. For more
information on how to run DMAI applications, refer to the DMAI user guide shipped with the DMAI
installation in the DVSDK.

Audio

To decode an AAC file to Line out (connect headphone to listen to output) execute:

target # ./audio_decode1_omapl138.x470MV -c aachedec -e decode \
-i /usr/share/ti/data/sounds/davincieffect.aac -n 1000

To decode an AAC file to a PCM file execute:

target # ./audio_decode_io1_omapl138.x470MV -c aachedec -e decode \
-i /usr/share/ti/data/sounds/davincieffect.aac -n 1000 -o output.pcm

Display

To display a test pattern on the touchscreen LCD without using any codecs execute:

target # ./video_display_omapl138.x470MV -y 16 -O lcd --display_buffer 2

Video

To decode 30 frames from an H.264 encoded video to a YUV file execute:

target # ./video_decode_io2_omapl138.x470MV -c h264dec -e decode \
-i /usr/share/ti/data/videos/davincieffect_480x272.264 -n 30 -o output.yuv

To encode 30 frames of resolution 480x272 from a YUV file to an H.264 BP encoded file execute:

target # ./video_encode_io1_omapl138.x470MV -c h264enc \
-i output.yuv -o output.264 -r 480x272 -n 30

Speech

To decode a G.711 speech file to a PCM file execute:

target # ./speech_decode_io1_omapl138.x470MV -c g711dec -e decode \
-i /usr/share/ti/data/sounds/davincieffect.g711 -o output.pcm

To encode a G.711 speech file from the previously generated PCM file execute:

target # ./speech_encode_io1_omapl138.x470MV -c g711enc -e encode \
-i output.pcm -o output.g711

Image

To decode a JPEG image to a yuv file execute:

target # ./image_decode_io1_omapl138.x470MV -c jpegdec -e decode \
-i /usr/share/ti/data/images/remi003_422i.jpg -o output.yuv

OMAPL138 Software Developers Guide

Running the DMAI apps 8

To encode a JPEG image from the previously generated yuv file execute:

target # ./image_encode_io1_omapl138.x470MV -c jpegenc -e encode \
-i output.yuv -o output.jpg -r 720x576 --iColorSpace 3 --oColorSpace 1

The input parameters depends on the configuration of the input YUV file. In this case, the input file color
space format is YUV422 ILE.

To know more about the color space values as supported by the application, execute:

target # ./image_encode_io1_omapl138.x470MV -h

Running the Qt/Embedded examples

The Qt embedded comes with some examples applications. To see the examples that are available, check out
this directory on the target:

target # cd /usr/bin/qtopia/examples
target # ls

If the LCD touchscreen hasn't been calibrated before, you can start the Matrix Launcher Application as
described in the #Setting_up_the_DVSDK section or run the following command. Use a dull device to touch
the various points on the screen as prompted to calibrate the LCD

target # ts_calibrate

Terminate the Matrix application by touching the EXIT button on the LCD if it was started above.

You also need to export a couple of variables to enable the LCD touchscreen for the QT applications as
follows:

target # export TSLIB_TSDEVICE=/dev/input/touchscreen0
target # export QWS_MOUSE_PROTO=Tslib:/dev/input/touchscreen0

Execute the following command to run Qt/e calendar example application.

target # cd /usr/bin/qtopia/examples/richtext/calendar
target # ./calendar -qws -geometry 480x240+0+0

After you see the calendar interface, hit CTRL-C to terminate it or click on the X on the top right hand corner
of the calendar window.

Running GStreamer pipelines

The DVSDK comes with GStreamer, and the following pipelines are known to work. Refrain from using
Ctrl-C to terminate gst pipelines as un-expected results may occur. Pipelines will terminate on their own.

Reload the kernel module before running gstreamer pipelines :

target # /etc/init.d/loadmodule-rc restart

OMAPL138 Software Developers Guide

Image 9

Note: Before running these pipelines you'll need the LCD Touchscreen attached and speaker/headphone
connected to the Line-out stereo 3.5 mm jack for audio streaming.

Some of the GStreamer pipelines below use a sample vidoetestsrc element as a source. This element is a color
bar test pattern.

This pipeline encodes H.264 video generated from videoetestsrc element

target # gst-launch videotestsrc num-buffers=1000 ! TIVidenc1 \
codecName=h264enc engineName=codecServer ! filesink \
location=sample.264 -v

To playback the H.264 encoded videotestsrc element, run the following pipeline

target # gst-launch filesrc location=sample.264 ! typefind ! TIViddec2 ! \
queue ! TIC6xColorspace engineName=codecServer ! queue ! tidisplaysink2 -v

This pipeline encodes MPEG-4 video generated from videoetestsrc element

target # gst-launch videotestsrc num-buffers=1000 ! TIVidenc1 \
codecName=mpeg4enc engineName=codecServer ! filesink \
location=sample.m4v -v

To playback the MPEG-4 encoded videotestsrc element, run the following pipeline

target # gst-launch filesrc location=sample.m4v ! typefind ! TIViddec2 ! \
queue ! TIC6xColorspace engineName=codecServer ! queue ! tidisplaysink2 -v

This pipeline decodes a provided H.264 encoded video stream

target # gst-launch filesrc location=/usr/share/ti/data/videos/davincieffect_480x272.264 ! \
typefind ! TIViddec2 ! queue ! TIC6xColorspace engineName=codecServer ! queue ! \
tidisplaysink2 -v

This pipeline decodes a provided MPEG-4 video encoded video stream

target # gst-launch filesrc location=/usr/share/ti/data/videos/davincieffect_480x272.mpeg4 ! \
typefind ! TIViddec2 ! queue ! TIC6xColorspace engineName=codecServer ! queue ! \
tidisplaysink2 -v

This pipeline decodes a provided MPEG-2 video encoded video stream

target # gst-launch filesrc location=/usr/share/ti/data/videos/davincieffect_480x272.m2v ! \
TIViddec2 codecName=mpeg2dec engineName=codecServer ! queue ! TIC6xColorspace \
engineName=codecServer ! queue ! tidisplaysink2 -v

This pipeline decodes a provided AAC audio file for 100 buffers

target # gst-launch filesrc location=/usr/share/ti/data/sounds\
/davincieffect.aac num-buffers=100 ! typefind ! TIAuddec1 ! alsasink -v

Note: If you would like to listen to more of the clip, you can increase the num-buffers=100 line from above
command or remove it completely to hear the entire clip.

OMAPL138 Software Developers Guide

Running GStreamer pipelines 10

This pipeline decodes a provided MP4 (H.264 + AAC) file for 1000 buffers

target # gst-launch -v filesrc location=/usr/share/ti/data/videos\
/davincieffect_480x272.mp4 num-buffers=1000 ! qtdemux name=demux demux.audio_00 ! \
queue max-size-buffers=8000 max-size-time=0 max-size-bytes=0 ! TIAuddec1 ! \
 alsasink demux.video_00 ! queue ! TIViddec2 ! TIC6xColorspace \
engineName=codecServer ! queue ! tidisplaysink2

Note: If you would like to see more of the clip, you can increase the num-buffers=1000 line from above
command or remove it completely to see the entire clip.

Running the Audio SOC example

To run the Audio Soc example a different kernel image (with ALSA driver disabled) must be created and used
to boot-up the board. You'll also need to connect headphones or speakers to the Line Out stereo 3.5 mm jack
on the target EVM.

On the Linux Host development environment (where DVSDK was installed) rebuild the base components as
described in the #Rebuilding_the_DVSDK_components. This step is not necessary if it has been previously
performed.

host $ cd ${DVSDK}
host $ make clean
host $ make components

Once the re-build completes, we will re-build the Linux kernel specifically for the Audio SOC example and
install it (using sudo privileges) on the target file-system as follows:

host $ make audio_soc_example_kernel
host $ sudo make audio_soc_example_kernel_install

Copy the newly built kernel from the target file-system installation directory to the host's tftpboot directory:

host $ cp ${HOME}/targetfs/boot/uImage_audioSoc /tftpboot/.

Then re-build the Audio Soc example as follows:

host $ make audio_soc_example

Finally install the application examples on the target file-system as follows (using sudo privileges):

host $ sudo make audio_soc_example_install

Start minicom or Tera Term and power-cycle the board. Hit any key to stop the boot process.

At the U-boot prompt on the the target board, type the following commands:

u-boot :> setenv bootfile_org ${bootfile}
u-boot :> setenv bootfile uImage_audioSoc
u-boot :> saveenv
u-boot :> boot

OMAPL138 Software Developers Guide

 Running the Audio SOC example 11

The board will boot using the new kernel image. Login into the target using root as the login name.

On the target board go to:

target # cd /usr/share/ti/audio_soc_example/Release

We need to unload the TI system modules first as follows:

target # /etc/init.d/loadmodule-rc stop

To run the application, DSPLink module has to be inserted into the kernel as follows:

target # mknod /dev/dsplink c 230 0
target # insmod ./dsplinkk.ko

Then execute:

target # ./audioSoc_gpp audioSoc_dsp.out ../davincieffect_clip.pcm

To listen to the raw audio file clip, connect speakers/headphones to the Line-out stereo 3.5 mm jack on the
board. The application will stream the PCM file from the ARM processor to the Line-out audio jack via the
DSP driver peripherals.

Note: The kernel used for the Audio SOC example has the Advanced Linux Sound Architecture (ALSA)
driver disabled since audio is being processed on the DSP. If you would like to go back to the previous
running Linux kernel, you'll need to start minicom or Tera Term and power-cycle the board. Hit any key to
stop the boot process.

At the U-boot prompt on the the target board, type the following commands:

u-boot :> setenv bootfile ${bootfile_org}
u-boot :> saveenv
u-boot :> boot

You are now back to booting the Linux kernel prior to running the Audio SOC example.

DVSDK software overview and support

OMAPL138 Software Developers Guide

 DVSDK software overview and support 12

Overview of the DVSDK Software stack

The DVSDK contains many software components. Some are developed by Texas Instruments (blue in the
diagram above) and some are developed in and by the open source community (grey in the diagram above). TI
contributes, and sometimes even maintains, some of these open source community projects, but the support
model is different from a project developed solely by TI. The table below lists how to get support for each
component.

Component(s) Type Support

DVSDK demos, Codec Engine,
Multimedia Codecs, Platform Support
Package, Framework Components,
DSP/BIOS, DSPLink, c6accel etc.

Texas Instruments
Developed
Software

In addition to the support channels listed at
#TI Worldwide Technical Support you can
use the following support channels:

The community Linux forum is monitored
by TI support and engineering teams and
can be used for asking questions about
development using this SDK.

The multimedia codecs forum is a separate
forum for discussing the multimedia
codecs.

If you have a bug tracking number (starting
with SDOCM) you can track the issue using
the SDOWP bug tracking web access

OMAPL138 Software Developers Guide

 DVSDK software overview and support 13

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Omapl138_stack_overview.png
http://e2e.ti.com/support/embedded/f/354.aspx
http://e2e.ti.com/support/embedded/f/356.aspx
https://cqweb.ext.ti.com/cqweb/main?command=GenerateMainFrame&service=CQ&schema=SDo-Web&contextid=SDOWP&username=readonly&password=readonly

Davinci Multimedia Application Interface Open Source
Project DMAI community project

GStreamer Open Source
Project GStreamer community project

GStreamer plugin for accelerated
multimedia

Open Source
Project gst-ti community project

Qt/Embedded Open Source
Project Qt/Embedded community project

RTSC (XDC) Open Source
Project RTSC community project

Linux kernel Open Source
Project Linux kernel community project

TI Worldwide Technical Support

OMAPL138 Software Developers Guide

 TI Worldwide Technical Support 14

https://gforge.ti.com/gf/project/dmai
http://www.gstreamer.net
http://gstreamer.ti.com
http://qt.nokia.com/products/platform/qt-for-embedded-linux
http://rtsc.eclipse.org
http://www.kernel.org

Creating a Linux application

OMAPL138 Software Developers Guide

 Creating a Linux application 15

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Ti-support.png

Overview of a basic Linux application component usage

While creating a basic Linux application you are typically using the following components of the stack (the
rest are greyed out above):

Component Purpose in this application Location in the DVSDK

GCC toolchain Cross compiler for generating
ARM Linux binaries. linux-devkit directory under the DVSDK

Open Source
Linux libraries

Provides libraries such as
libpng, libusb, libz, libcurl etc.

linux-devkit/arm-arago-linux-gnueabi/lib and
linux-devkit/arm-arago-linux-gnueabi/usr/lib/

Platform
Support Package

Provides device drivers for the
EVM and documentation and
examples to support them.

psp

Linux kernel The Linux kernel with the PSP
device drivers psp/linux-kernel-source

You can find examples all over the web on how to write this type of application. The PSP examples are a
good reference on how to access the peripheral drivers specific to this platform.

OMAPL138 Software Developers Guide

 Creating a Linux application 16

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Omapl138_psp_overview.png

Creating a DSPLink application

Overview of a DSPlink application component usage

DSPLink is foundation software for the inter-processor communication across the GPP-DSP boundary. It
provides a generic API that abstracts the characteristics of the physical link connecting GPP and DSP from the
applications. It eliminates the need for customers to develop such link from scratch and allows them to focus
more on application development. This software can be used across platforms:

Using SoC (System on Chip) with GPP and one DSP.•
With discrete GPP and DSP.•

DSPLink provides several features and capabilities that make it easier and more convenient for developers
using a multi-core system:

Provides a generic API interface to applications•
Hides platform/hardware specific details from applications•
Hides GPP operating system specific details from applications, otherwise needed for talking to the
hardware (e.g. interrupt services)

•

Applications written on DSPLink for one platform can directly work on other platforms/OS
combinations requiring no or minor changes in application code

•

Makes applications portable•
Allows flexibility to applications of choosing and using the most appropriate high/low level protocol•
Provides scalability to the applications in choosing only required modules from DSPLink.•

OMAPL138 Software Developers Guide

 Creating a DSPLink application 17

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Omapl138_dsplink_overview.png

In addition to the components used for the basic Linux app, these are used (and the rest is greyed out in the
diagram above):

Component Purpose in this application Location in the
DVSDK

DSP/BIOS Real-Time Operation System for TI DSPs dspbios_x_xx_xx_xx

DSPLink GPP to DSP processor communication link for passing
messages and data in multiprocessor systems dsplink_x_xx_xx_xx

C6000 Code
Generation Tools TI DSP code generation tools cgt6x_x_x_xx

Good application examples to start from include:

The sample applications (dsplink_x_xx_xx_xx/dsplink/gpp/src/samples and
dsplink_x_xx_xx_xx/dsplink/dsp/src/samples) provide simpler and smaller examples on how to use
DSPLlink.

•

On some platforms, an Audio SOC example application (audio_soc_example_x_xx_xx_xx) is
delivered that leverages DSPLink to perform audio processing and output the data via the DSP
peripheral drivers. This example illustrates how DSP-side peripheral drivers run in conjunction with
the Linux kernel application on a ARM processor. More information on this example can be found at
http://processors.wiki.ti.com/index.php/Audio_Soc_example

•

Creating a C6Run application

Overview of a basic C6Run application component usage

OMAPL138 Software Developers Guide

 Creating a C6Run application 18

http://processors.wiki.ti.com/index.php/Audio_Soc_example
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Omapl138_c6run_overview.png

The C6Run package is to ease initial development and loading of DSP code for ARM developers who are
familiar with building applications for the Linux OS using an ARM GCC cross-compiler. The project consists
of two main components:

A build system to create back-end libraries from the various TI software technologies and the code of
the C6Run project itself

1.

Front-end scripts that wrap the TI C6000 code generation tools in a GCC-like interface and also make
use of the back-end build system to create ARM-side executables or libraries that transparently make
use of the DSP.

2.

There are two uses of the C6Run project, exposed through two different front-end scripts. They are called
C6RunLib and C6RunApp.

C6RunLib works to build a static ARM library from C source files that can be linked with an ARM
application and provide access to the DSP when library functions are called. This allows the user to
keep portions of the application on the ARM and move other portions to the DSP.

•

C6RunApp tool acts as a cross-compiler for the DSP, allowing portable C applications to be rebuilt
for the C6000 DSP core of various Texas Instruments heterogeneous (ARM+DSP) processors. The
C6RunApp front-end consists of a single script, called c6runapp-cc. This use of this script matches, as
much as possible, the use of GCC. It can compile C code to C6000 object files and link the C6000
object files into an application. When performing linking operations, the tool makes use of a number
of steps (including linking using the C6000 code generation tools) to create an ARM-side executable
from the DSP object files.

•

In addition to the components used for the Linux app, these are used (and the rest is greyed out in the diagram
above):

Component Purpose in this application Location in the DVSDK

LinuxUtils

Linux specific utilities for Framework
Components, used for allocating physically
contiguous memory (CMEM module, see this wiki
topic for more information) for sharing data
between the ARM and DSP.

linuxutils_xx_xx_xx_xx

RTSC (XDC) Tool required to configure and build DSP/BIOS
real-time kernel for the DSP. xdctools_xx_xx_xx_xx

Local Power
Manager

TI power management package (not required for all
platforms) local_power_manager_x_xx_xx_xx

DSP/BIOS Real-Time Operation System for TI DSPs dspbios_x_xx_xx_xx

DSPLink
GPP to DSP processor communication link for
passing messages and data in multiprocessor
systems

dsplink_x_xx_xx_xx

C6000 Code
Generation
Tools

TI DSP code generation tools cgt6x_x_x_xx

OMAPL138 Software Developers Guide

 Creating a C6Run application 19

http://processors.wiki.ti.com/index.php/CMEM_Overview
http://processors.wiki.ti.com/index.php/CMEM_Overview

Good application examples to start from:

The C6Run package contains sample applications to test/validate the functionality. The applications
are located in the c6run_xx_xx_xx_xx/examples and the c6run_xx_xx_xx_xx/test directories. Each
example includes full source and standard makefiles.

•

There is a QT-based fractal example that leverages C6Run to perform the fractal computation on the
DSP. Information on how to build and run the example can be found at: C6Run QT Fractal Example

•

For more information on C6Run visit the TI Embedded Processors wiki, C6Run Project Page.

Creating a C6Accel application

Overview of a basic C6Accel application component usage

The C6Accel package wraps key DSP software kernels in an xDAIS algorithm which can be invoked from the
ARM side using simple API calls. C6Accel can be used in a plug and play like any other codec used for
encoding and decoding audio and video streams. C6Accel is built in the codec engine compliant IUniversal
framework and can be used on various DSP only and ARM + DSP devices.

The purpose of C6Accel is to provide the ARM user with the compute power of the DSP on computational
intense tasks like running Color Space Conversion, Filtering or Image/Signal Processing algorithm. The
library of DSP kernels wrapped in C6Accel are optimized for performance on the DSP core and would allow
the ARM user to use the DSP as an accelerator for their application. By using these routines, the ARM

OMAPL138 Software Developers Guide

 Creating a C6Accel application 20

http://processors.wiki.ti.com/index.php/C6Run_QT_Fractal_Example
http://processors.wiki.ti.com/index.php/C6Run_Project
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Omapl138_c6accel_overview.png

developer can develop a more compelling application by achieve execution speeds considerably faster than
equivalent C code written on ARM. In addition, by providing ready-to-use DSP kernels, C6Accel can
significantly shorten the ARM application development time.

The benefits of using C6Accel include:

Ready to use kernels: Library of Optimized DSP kernels wrapped in a single package. Reduces
learning curve and time to market.

1.

Easy to interface: ARM side API library abstracts complexities while invoking DSP functionality
from ARM application

2.

Easy Portability: Fully compatible with most TI C6x devices3.
Efficient multiple call execution: Capabilty to chain kernel calls using single call to codec engine4.
Easy Evaluation of DSP performance: DSP kernel Benchmarks (cycle and code size) provided in
C6Accel aid in evaluating performance that can be leveraged from the DSP and make informed
decisions while developing applications

5.

Parallel processing: Asynchronous calling mode enables parallel processing on DSP and ARM6.
Simple Template to add functionality on DSP: SoC developers can explore maximum flexibility by
using C6Accel algorithm as a template to add custom compute intense functionality on the DSP that
can be accessed from the ARM.

7.

In addition to the components used for the Linux app, these are used (and the rest is greyed out in the diagram
above):

Component Purpose in this application Location in the DVSDK

Codec
Engine

Cross platform framework for the applications invoking
multimedia codecs and other algorithms. codec_engine_xx_xx_xx_xx

LinuxUtils

Linux specific utilities for Framework Components assisting
with resource allocation of DMA channels (EDMA module),
physically contiguous memory (CMEM module, see this wiki
topic for more information) and allows the codecs to receive
completion interrupts of various coprocessor resources (IRQ
module).

linuxutils_xx_xx_xx_xx

RTSC
(XDC)

Tool used to configure Codec Engine, Framework
Components and multimedia codecs for your application. xdctools_xx_xx_xx_xx

XDAIS
TI Algorithm Interface Standard used for algorithm
standardization which is used by various other components
including Codec Engine

xdais_x_xx_xx_xx

DSPLINK GPP to DSP processor communication link for passing
messages and data in multiprocessor systems dsplink_x_xx_xx_xx

Good application examples to start from include:

The C6Accel contains a sample application to test/validate the functionality. The application is
located in the c6accel_xx_xx_xx_xx/soc/app directory.

•

For more information on C6Accel visit C6Accel: ARM access to DSP software

OMAPL138 Software Developers Guide

 Creating a C6Accel application 21

http://processors.wiki.ti.com/index.php/CMEM_Overview
http://processors.wiki.ti.com/index.php/CMEM_Overview
http://processors.wiki.ti.com/index.php/C6Accel:_ARM_access_to_DSP_software_on_TI_SoCs

Creating a DMAI multimedia application

Overview of a DMAI application component usage

The Davinci Multimedia Application Interface (DMAI) is a thin utility layer on top of Codec Engine and the
Linux kernel. The benefits of using DMAI include:

DMAI and it's sample applications are written to adhere to the XDM 1.x semantics for multimedia
codecs. Codec Engine facilitates the invocation of the codecs, but DMAI provides the semantics to
make the codecs plug and play.

1.

DMAI wraps the Linux device drivers in a multimedia function focused API, shielding you from the
rapid progress of the Linux kernel, increasing your portability.

2.

The DVSDK demos and gst-ti plugin are written on top of DMAI. If you can make a codec work with
the DMAI sample applications, it will most likely work in these applications too.

3.

In addition to the components used for the Linux app, these are used (and the rest is greyed out in the diagram
above):

Component Purpose in this application Location in the DVSDK

Codec Engine
Cross platform framework for the applications
invoking multimedia codecs and other
algorithms.

codec_engine_xx_xx_xx_xx

OMAPL138 Software Developers Guide

 Creating a DMAI multimedia application 22

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Omapl138_dmai_overview.png
http://processors.wiki.ti.com/index.php/XDM_1.x_Semantics

Framework
Components

Cross platform framework for servicing
resources to algorithms. framework_components_xx_xx_xx_xx

LinuxUtils

Linux specific utilities for Framework
Components assisting with resource allocation
of DMA channels (EDMA module), physically
contiguous memory (CMEM module, see this
wiki topic for more information) and allows the
codecs to receive completion interrupts of
various coprocessor resources (IRQ module).

linuxutils_xx_xx_xx_xx

Davinci
Multimedia
Application
Interface

Multimedia application utility layer dmai_xx_xx_xx_xx

Multimedia
Codecs

Compression and decompression of multimedia
data codecs_<platform>_xx_xx_xx_xx

RTSC (XDC)
Tool used to configure Codec Engine,
Framework Components and multimedia codecs
for your application.

xdctools_xx_xx_xx_xx

Good application examples to start from include:

The DMAI sample applications (dmai_xx_xx_xx_xx/packages/ti/sdo/dmai/apps) provide simpler and
smaller examples on how to use DMAI to create a multimedia application.

•

If applicable for your device, the DVSDK demos located in the dvsdk_demos_xx_xx_xx_xx of the
$(DVSDK) installation directory. These use DMAI to provide a full multimedia application.
However, the application does not support A/V sync; if this feature is required GStreamer is a better
option.

•

Creating a Qt/Embedded application

OMAPL138 Software Developers Guide

 Creating a Qt/Embedded application 23

http://processors.wiki.ti.com/index.php/CMEM_Overview
http://processors.wiki.ti.com/index.php/CMEM_Overview

Overview of a Qt/Embedded application component usage

Qt/Embedded is a Graphical User Interface toolkit for rendering graphics to the Linux framebuffer device, and
is included in this kit. The base Qt toolkit on the other hand renders the graphics to the X11 graphical user
interface instead of to the basic framebuffer.

In addition to the components used for the basic Linux app, these are used (and the rest is greyed out in the
diagram above):

Component Purpose in this application Location in the DVSDK

Qt/Embedded Provides a Graphical User Interface
toolkit linux-devkit/arm-arago-linux-gnueabi/usr/lib/libQt*

See the Qt Reference Documentation on various API's and its usages. You can also download some Qt/e
example applications from Qt Examples web page.

Compiling an application
DVSDK Linux development kit includes the Qt/Emebedded host tools and development header and libraries.

1. First, configure your cross compilation environment #Setting_up_cross_compilation_environment.

2. Next, follow the typical Qt/e recommended method for cross compiling your application on host.

OMAPL138 Software Developers Guide

 Creating a Qt/Embedded application 24

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Omapl138_qt_overview.png
http://doc.trolltech.com/4.6/index.html
http://doc.trolltech.com/4.6/examples.html

host $ cd <directory where your application is>
host $ qmake -project
host $ qmake
host $ make

Creating a GStreamer application

Overview of a GStreamer application component usage

GStreamer is an open source multimedia framework which allows you to construct pipelines of connected
plugins to process multimedia content. There is a plugin which accelerates multimedia using DMAI and
Codec Engine.

Compared to creating an application directly on top of DMAI you get the advantage of A/V sync and access
to many useful open source plugins which e.g. allows you to demux avi-files or mp4-files. The downside is
increased complexity and overhead.

In addition to the components used for the DMAI app, these are used (and the rest is greyed out in the diagram
above):

Component Purpose in this application Location in the DVSDK

GStreamer Multimedia Framework linux-devkit/arm-arago-linux-gnueabi/usr/lib

To construct your own pipelines there are examples of how to use the open source plugins in various places

OMAPL138 Software Developers Guide

 Creating a GStreamer application 25

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Omapl138_gstreamer_overview.png

on the web including the GStreamer homepage. And to learn more about GStreamer-ti plugin architecture
watch this online video and visit gstreamer.ti.com.

See the GStreamer Application Development Manual and the GStreamer 0.10 Core Reference Manual on how
to write GStreamer applications.

Compiling an application
DVSDK Linux development kit includes the GStreamer development header files, libraries and package
configs.

1. First, configure your cross compilation environment #Setting_up_cross_compilation_environment

2. Next, follow the typical GStreamer recommended method for compiling your application. e.g.

host $ cd <directory where your application is>
host $ gcc -o decode decode.c `pkg-config --libs --cflags gstreamer-0.10`

Additional Procedures

Setting up cross compilation environment

To enable your application development, DVSDK comes with linux-devkit which contains package header,
libraries and other package dependent information needed during development. Execute the following
commands to configure your cross compilation environment

host $ source ${DVSDK}/linux-devkit/environment-setup

The above command will export cross compilation specific environment variables.

You will notice that the command will add [linux-devkit] to your bash prompt to indicate that you have
exported the required cross compiler variables.

Rebuilding the DVSDK components

The DVSDK has provided a top level Makefile to allow the re-building of the various components within the
DVSDK.

Note: The DVSDK component build environment is self contained and doesn't require the
#Setting_up_cross_compilation_environment thus should be avoided to prevent possible build failures.

Rebuild the DVSDK components by first entering the DVSDK directory using:

host $ cd ${DVSDK}

OMAPL138 Software Developers Guide

 Additional Procedures 26

http://software-dl.ti.com/sdo/sdo_apps_public_sw/GStreamer_On_TI/FLV1/GStreamer_On_TI.htm
http://gstreamer.ti.com
http://www.gstreamer.net/data/doc/gstreamer/head/manual/html/index.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html

The DVSDK makefile has a number of build targets which allows you to rebuild the DVSDK components.
For a complete list execute:

host $ make help

Some of the components delivered in the DVSDK are not pre-built. The provided 'make clean' & 'make
components' build targets are designed to clean and build all components (e.g. Linux Kernel, U-boot, CMEM,
DMAI, etc.) for which a build is compulsory to begin application development. These components must first
be cleaned and then rebuilt by the user before the user attempts to rebuild anything else. To do this, simply run

host $ make clean
host $ make components

After that, each of the build targets listed by 'make help' can then be executed using:

host $ make <target>_clean
host $ make <target>
host $ sudo make <target>_install

In order to install the resulting binaries on your target, execute one of the "install" targets using "sudo"
privileges. Where the binaries are copied is controlled by the EXEC_DIR variable in
${DVSDK}/Rules.make. This variable is set up to point to your NFS mounted target file system when you
executed the DVSDK setup (setup.sh) script, but can be manually changed to fit your needs.

You can remove all components (including demos and examples) generated files at any time using:

host $ make clean

And you can rebuild all components and demos/examples using:

host $ make all

You can then install all the resulting target files using:

host $ sudo make install

Note: By default make install will override existing files and this can be controlled via modifying
EXEC_DIR variable in Rules.make file.

Note: Booting newly build kernel requires you to run "depmod -a" command on target to regenerate
new module dependencies for modprobe to work properly.

Creating your own Linux kernel image

The pre-built Linux kernel image (uImage) provided with the DVSDK is compiled with a default
configuration. You may want to change this configuration for your application, or even alter the kernel source
itself. This section shows you how to recompile the Linux kernel provided with the DVSDK, and shows you
how to boot it instead of the default Linux kernel image.

1. If you haven't already done so, follow the instructions in #Setting_up_the_DVSDK to setup your build
environment.

OMAPL138 Software Developers Guide

Rebuilding the DVSDK components 27

2. Recompile the kernel provided with the DVSDK by executing the following:

host $ cd ${DVSDK}
host $ make linux_clean
host $ make linux
host $ sudo make linux_install

3. You will need a way for the boot loader (u-boot) to be able to reach your new uImage. TFTP server has
been setup in the #Setting_up_the_DVSDK section.

4. Copy your new uImage from the EXEC_DIR specified in the file ${DVSDK}/Rules.make to the tftpserver:

host $ cp ${HOME}/targetfs/boot/uImage /tftpboot/new_uImage

5. Run the u-boot script and follow the instructions. Select TFTP as your Linux kernel location and the file
'new_uImage' as your kernel image.

host $ ${DVSDK}/bin/setup-uboot-env.sh

6. Note that when you change your kernel, it is important to rebuild all the kernel modules supplied by the
DVSDK sub-components. You can find a list of these modules under the directory
/lib/modules/<kernel-version>/kernel/drivers/dsp/ (replace <kernel-version> with the version of the kernel
applicable to your platform)

host $ ls ${HOME}/targetfs/lib/modules/<kernel-version>/kernel/drivers/dsp/

For each module that you see listed, you should go back to the host, rebuild it, and replace the file with the
one from your EXEC_DIR. E.g. for cmemk.ko

host $ cd ${DVSDK}
host $ make cmem_clean
host $ make cmem
host $ sudo make cmem_install

You can also opt to re-build all the TI provided kernel modules (CMEM, etc.) and examples applications
including the Linux kernel modules by issuing a make all. Then running the make install as described in the
#Rebuilding_the_DVSDK_components.

8. After updating all modules, start minicom or Tera Term and power-cycle the board. The new kernel will
now be loaded over TFTP from your Linux host.

9. Re-generate the kernel module dependency file on target by running the below command.

target $ depmod -a

Setting up Tera Term

Tera Term is a commonly used terminal program on Windows. If you prefer to use it instead of Minicom, you
can follow these steps to set it up.

1. Download Tera Term from this location, and start the application.

OMAPL138 Software Developers Guide

Creating your own Linux kernel image 28

http://hp.vector.co.jp/authors/VA002416/ttermp23.zip

2. In the menu select Setup->General... and set:

Default port: COM1

3. In the menu select Setup->Serial Port... and set the following:

Port: COM1
Baud rate: 115200
Data: 8 bits
Parity: none
Stop: 1 bit
Flow control: none

Flashing boot loader using serial flash utility

Follow the below instructions to flash ubl binaries on the OMAP-L138 EVM from a Windows PC.

1. Power OFF the OMAP-L138 EVM.

2. Connect the RS232 serial cable from the host Windows PC to the OMAP-L138 EVM.

3. Set the boot pins to UART2 boot mode. This is done by setting switch S7 on the OMAP-L138 EVM
according to the following table:

Pin# 1 2 3 4 5 6 7 8

Position OFF OFF OFF OFF OFF OFF ON ON

4. Copy these files from DVSDK installation directory to your host Windows PC directory of choice:

${DVSDK}/psp/board-utilities/serialflasher/sfh_OMAP-L138.exe•
${DVSDK}/psp/board-utilities/images/boot-strap/arm-mmcsd-ais.bin•

Optional

${DVSDK}/psp/prebuilt-images/u-boot-da850-omapl138-evm.bin•

NOTE: The serial flash utility must be run from the command line under Windows with the Microsoft .NET
Framework 4 installed. You can download it from here

5. Open a command prompt on the host Windows PC and run the following flashing utility that was copied, as
follows:

sfh_OMAP-L138.exe -flash_noubl -p COM1 arm-mmcsd-ais.bin

NOTE: If you want to flash both ubl and u-boot in SPI flash then use: sfh_OMAP-L138.exe -flash -p COM1
arm-mmcsd-ais.bin u-boot-da850-omapl138-evm.bin

6. When asked, power ON the OMAP-L138 EVM.

OMAPL138 Software Developers Guide

Setting up Tera Term 29

http://msdn.microsoft.com/en-us/netframework/aa569263.aspx

7. After the UBL file have been flashed, power OFF the EVM. Restore S7 back to normal (SPI boot) mode
and power ON the EVM. This is done by setting switch S7 on the OMAP-L138 EVM according to the
following table:

Pin# 1 2 3 4 5 6 7 8

Position OFF OFF OFF OFF OFF OFF OFF OFF

How to copy the kernel image to SPI Flash

The documented process uses TFTP to load the kernel image onto SDRAM and save to SPI flash. The chart
shows the SPI flash partitions

Address Range Size Usage
0x000000 to 0x03FFFF 256K uboot

0x040000 to 0x07FFFF 256K uboot environment variables

0x080000 to 0xA7FFFF 2.5M kernel

0xA80000 to 0x7FFFFF 5M

The steps assumes that you have already flashed bootloaders (uboot,ubl) as described in #Flashing boot loader
using serial flash utility, and that you have run the setup.sh' script to boot the kernel from TFTP and
filesystem from NFS.

1. Start minicom or Tera Term and power ON the board. Press any key to stop the boot process.

2. At the u-boot prompt execute the following commands:

u-boot :> dhcp
u-boot :> tftpboot 0xC0700000 ${bootfile}
u-boot :> sf probe 0
u-boot :> sf erase 0x080000 0x280000
u-boot :> sf write 0xC0700000 0x080000 0x280000

3. Re-run the u-boot script and follow the instructions, but this time select that your Linux kernel is in flash.

host $ ${DVSDK}/bin/setup-uboot-env.sh

Note! If you have built your own Linux kernel image as described in #Creating your own Linux kernel image,
copy the resulting image to the tftp root directory and run the setup-uboot-env.sh (as indicated above):

host $ cp ${HOME}/targetfs/home/root/omapl138/boot/uImage /tftpboot/uImage-mynewimage

When you run the setup script the first time as per the instructions above, make sure you select the new
uImage file instead of the default one.

OMAPL138 Software Developers Guide

Flashing boot loader using serial flash utility 30

Integrating a new Codec in the OMAPL138 DVSDK

There are codecs available on the C64x+ Codec Page which are not included in the DVSDK because they
require additional licenses. In order to use these codecs in the DVSDK environment they must be integrated in
the OMAP-L138 Codec Server. The following steps describe how to integrate a new codec into the
OMAP-L138 Codec Server package. The MP3 Decoder is used as an example but the information applies to
any codec.

NOTE: That xx_xx_xx_xx should corresponded to the specific version associated with your DVSDK
installation.

1. Download the MP3 Decoder package from the Linux Download section located on the C64x+ Audio
Codecs Page and install it.

host $./c64xplus_mp3dec_x_xx_xxx_production.bin

2. Extract the tar file from the directory the MP3 codec was installed.

host $ tar -xf c64xplus_mp3dec_x_xx_xxx_production.tar

3. Make a copy of the OMAP-L138 codec server folder $(DVSDK)/codecs-omapl138_x_xx_xx_xx
and rename it:

host $ cd $(DVSDK)
host $ cp -r codecs-omapl138_xx_xx_xx_xx codecs-omapl138_x_xx_xx_xx_test

4. Update in top level Rules.make file to point to the directory of the newly copied codec folder:

host $ gedit Rules.make

5. Modify to following lines in the Rules.make as shown in italics below:

Where the codecs are installed.
CODEC_INSTALL_DIR=$(SDK_INSTALL_DIR)/codecs-omapl138_x_xx_xx_xx
CODEC_INSTALL_DIR=$(SDK_INSTALL_DIR)/codecs-omapl138_x_xx_xx_xx_test

6. Save and exit editor.

7. Copy the folder mp3dec directory from the MP3 codec directory to the DVSDK codecs folder previously
created:

host $ cp -r \
c64xplus_mp3dec_x_xx_xxx_production/packages/ti/sdo/codecs/mp3dec \
$(DVSDK)/codecs-omapl138_x_xx_xx_xx_test/packages/ti/sdo/codecs/.

8. A few files need to be update that were copied from the MP3 codec package so that a new codec server can
be built for the C674 target:

Replace the content of
$(DVSDK)/codecs-omapl138_x_xx_xx_xx_test/packages/ti/sdo/codecs/mp3dec/package.xs with the
following

•

OMAPL138 Software Developers Guide

 Integrating a new Codec in the OMAPL138 DVSDK 31

http://software-dl.ti.com/dsps/dsps_public_sw/codecs/C64XPlus_Audio/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/codecs/C64XPlus_Audio/index_FDS.html

/*
 * ======== package.xs ========
 *
 */

/*
 * ======== getLibs ========
 */
function getLibs(prog)
{
 var lib = null;

 if (prog.build.target.isa == "64P"||prog.build.target.isa == "674") {
 if (this.MP3DEC.watermark == false) {
 lib = "lib/mp3dec_tii_l1l2l3.l64P";
 }
 else {
 lib = null;
 }
 print(" will link with " + this.$name + ":" + lib);
 }
 return (lib);
}

/*
 * ======== getSects ========
 */
function getSects()
{
 var template = null;

 if (Program.build.target.isa == "64P"||Program.build.target.isa == "674") {
 template = "ti/sdo/codecs/mp3dec/link.xdt";
 }

 return (template);
}

Replace the content of
$(DVSDK)/codecs-omapl138_x_xx_xx_xx_test/packages/ti/sdo/codecs/mp3dec/ce/package.xs with
the following

•

/*
 * ======== package.xs ========
 *
 */

function getLibs(prog)
{
 var lib = null;

 if (prog.build.target.isa == "64P"||prog.build.target.isa == "674") {

 lib = "lib/mp3auddecskel.a" + prog.build.target.isa;

 print(" will link with " + this.$name + ":" + lib);

 }

OMAPL138 Software Developers Guide

 Integrating a new Codec in the OMAPL138 DVSDK 32

 return (lib);
}

Replace the content of
$(DVSDK)/codecs-omapl138_x_xx_xx_xx_test/packages/ti/sdo/codecs/mp3dec/ce/package.bld with
the following

•

/*
 * ======== package.bld ========
 */

Pkg.attrs.exportAll = true;
var SRCS = ["src/auddec1_skel.c",];

for (var i = 0; i < Build.targets.length; i++) {
 var targ = Build.targets[i];

 if (targ.name == "C64P"||targ.name == "C674") {
 Pkg.addLibrary("lib/mp3auddecskel", targ, {
 }).addObjects(SRCS);
 }
}

9. Build the codecs package by running "make codecs_clean" followed by "make codecs" in the $(DVSDK)
folder. All the codec packages must be built in order for the Codec Engine GenServer Wizard to recognize
them. If "make components" hasn't been previously executed as described in the
#Rebuilding_the_DVSDK_components section, do so before running the next commands.

host $ cd $(DVSDK)
host $ make codecs_clean
host $ make codecs

10. The Codec Engine GenServer Wizard is a tool that is used to generate server packages. For information on
GenServer Wizard go to The Codec Engine GenServer Wizard FAQ

To Launch the server wizard:

host $ cd $(DVSDK)/codecs_omapl138_x_xx_xx_xx_test/
host $ make -f Makefile.ce.genserver

11. From the wizard GUI open the file (File -> Open)
codecs-omapl138_x_xx_xx_xx_test/ti_sdo_server_cs_wizard.svrwiz. This file
includes the configuration of the original OMAP-L138 codec server.

12. Set the Server Package Name: ti.sdo.server.cs

13. Set the Destination Directory: $(DVSDK)/codecs-omapl138_x_xx_xx_xx_test/packages

14. Set C6000 TI cgtools Directory to: $(DVSDK)/cgt6x_x_x_xx

15. The Search Path must be modified to pick up the correct codec packages and dependent components.
Click on Set Search Path button and remove all the existing paths. Now add the following:

OMAPL138 Software Developers Guide

 Integrating a new Codec in the OMAPL138 DVSDK 33

http://processors.wiki.ti.com/index.php/Codec_Engine_GenServer_Wizard_FAQ

$(DVSDK)/c6accel_x_xx_xx_xx/soc/packages•
$(DVSDK)/codecs_omapl138_x_xx_xx_xx_test/packages•
$(DVSDK)/codec-engine_x_xx_xx_xx/packages•
$(DVSDK)/xdais_x_xx_xx_xx/packages•
$(DVSDK)/framework-components_x_xx_xx_xx/packages•

16. Refresh Codec list, MP3DEC should now be in the codec list. If MP3DEC is not in the list make sure that
the Search Path to the codec packages has been updated properly in the previous step. Select all the codecs

17. Uncheck "Generate CCS Eclipse project" and Check "Don't check for building dependencies .."

18. Select Next and then Finish.

19. Select "Yes" to save the values entered in a new configuration file. Set the file name to:

ti_sdo_server_cs_wizard_test.svrwiz

Set the Save folder in to: $(DVSDK)/codecs_omapl138_x_xx_xx_xx_test

20. Replace to following files from
$(DVSDK)/codecs_omapl138_x_xx_xx_xx_test/packages/ti/sdo/server/cs/package.bld,
codec.cfg, server.cfg, server.tcf by copying them from the original Codec Server directory
$(DVSDK)/codecs_omapl138_x_xx_xx_xx/packages/ti/sdo/server/cs

21. Add the following to the codec.cfg file copied above:

 var MP3DEC = xdc.useModule('ti.sdo.codecs.mp3dec.ce.MP3DEC');

 MP3DEC.serverFxns = "MP3DEC_INBUFCACHEFLUSH";
 MP3DEC.stubFxns = "AUDDEC1_STUBS";
 MP3DEC.alg.watermark = false;
 MP3DEC.alg.codeSection = codeSection;
 MP3DEC.alg.udataSection = udataSection;
 MP3DEC.alg.dataSection = dataSection;

Add the following to codec.cfg in the Server.algs array:

 {name: "mp3dec", mod: MP3DEC , threadAttrs: {
 stackMemId: 0, priority: Server.MINPRI + 3},
 groupId : 2,
 },

22. Remove config.bld from the server/cs directory

23. Build the codec server package by running "make codecs" from the top on the $(DVSDK) directory.

host $ cd $(DVSDK)
host $ make codecs

24. Test the new server with one of the DMAI sample apps.

OMAPL138 Software Developers Guide

 Integrating a new Codec in the OMAPL138 DVSDK 34

How to create an SD card

This section describes how to create an SD card for the filesystem and has been tested with a 4GB SD card. It
is useful if you have downloaded the DVSDK from the web and want to recreate the SD card image provided
in the box, or if your existing SD card has been corrupted.

1. Make sure you have flashed the UBL bootloaders as described in #Flashing boot loader using serial flash
utility.

2. Plug an SD card on Linux host machine.

3. Run dmesg command to check the device node. Triple check this to ensure you do not damage your HDD
contents!

host $ dmesg
 [14365.272631] sd 6:0:0:1: [sdc] 3862528 512-byte logical blocks: (1.97 GB/1.84 GiB)
 [14365.310602] sd 6:0:0:1: [sdc] Assuming drive cache: write through
 [14365.325542] sd 6:0:0:1: [sdc] Assuming drive cache: write through
 [14365.325571] sdc: sdc1 sdc2

In this example, SD card is detected on /dev/sdc.

4. Run mksdboot script installed in DVSDK as show below using the correct device detected for the SD card
above

host $ sudo ${DVSDK}/bin/mksdboot.sh --device /dev/sdc --sdk ${DVSDK}

Wait for script to complete. On successful completion, remove the SD card from the host PC.

NOTE: When creating a bootable SD card, the mksdboot script uses the pre-built root filesystem, kernel and
bootloader images provided in the DVSDK installation

5. The DVSDK comes with a script for setting up u-boot to boot the filesystem and the Linux kernel from SD
card. Enter the DVSDK directory and execute:

host $ ${DVSDK}/bin/setup-uboot-env.sh

Follow the instructions (accept the defaults for host ip address and filesystem directory) and choose SD card
for both Linux kernel and filesystem location. Make sure to plug the RS-232 serial cable from your Linux host
PC to the OMAP-L138 board so that the script properly sets up the u-boot variables.

6. Insert the SD card into the OMAP-L138 EVM. Power cycle the board, it will boot from SD card.

Note! If you want to recreate the full SD card with the DVSDK installer execute the following:

host $ sudo ${DVSDK}/bin/mksdboot.sh --device /dev/sdc --sdk ${DVSDK} \
/path/to/dvsdk_omapl138-evm_4_xx_xx_xx_xx_setuplinux

This takes significant extra time so it's not part of the default instructions.

OMAPL138 Software Developers Guide

 How to create an SD card 35

Setting up Bluetooth and Wireless LAN demo

For more information on how to enable WL1271 daughtercard and run Wireless LAN and Bluetooth demo see
AM18x_Wireless_Connectivity_Demo.

And refer release note for additional information.

GPLv3 Disclaimer GPLv3 Disclaimer GPLv3
Disclaimer GPLv3 Disclaimer
There are GPLv3 licensed software components contained within the this SDK on host side. The software
manifest (software_manifest.htm) is located in the docs/ directory of the installed SDK. All GPLv3
components are contained in the SDK directory.

These GPLv3 components are provided for development purposes only and are intended to be removed
before installing the application(s) code in your final product.

Additional Resources

PSP Documentation

http://processors.wiki.ti.com/index.php/DaVinci_PSP_Releases

http://processors.wiki.ti.com/index.php/DaVinci_PSP_03.20.00.14_Release_Notes

http://processors.wiki.ti.com/index.php/DaVinci_PSP_03.20.00.14_Device_Driver_Features_and_Performance_Guide

http://processors.wiki.ti.com/index.php/Community_Linux_PSP_for_DA8x/OMAP-L1/AM1x

Wireless LAN, Bluetooth and Crypto

Note: To run WiFi demos from Matrix-GUI click on right arrow at the top of the GUI.

Wireless connectivity hardware installation:

http://processors.wiki.ti.com/index.php/AM18x_Wireless_Connectivity_Hardware_installation_guide

WLAN station mode demo: This include WLAN ping test demo from EVM & web browsing from EVM GUI

http://processors.wiki.ti.com/index.php/Open_Source_Wireless_Connectivity_Guide#WLAN_Station

WLAN SoftAP mode demo:

http://processors.wiki.ti.com/index.php/Open_Source_Wireless_Connectivity_Guide#WLAN_SoftAP

OMAPL138 Software Developers Guide

 Additional Resources 36

http://processors.wiki.ti.com/index.php/AM18x_Wireless_Connectivity_Demo
http://processors.wiki.ti.com/index.php/AM18x_Wireless_Connectivity_Release_Notes_Alpha_release
http://processors.wiki.ti.com/index.php/DaVinci_PSP_Releases
http://processors.wiki.ti.com/index.php/DaVinci_PSP_03.20.00.14_Release_Notes
http://processors.wiki.ti.com/index.php/DaVinci_PSP_03.20.00.14_Device_Driver_Features_and_Performance_Guide
http://processors.wiki.ti.com/index.php/Community_Linux_PSP_for_DA8x/OMAP-L1/AM1x
http://processors.wiki.ti.com/index.php/AM18x_Wireless_Connectivity_Hardware_installation_guide
http://processors.wiki.ti.com/index.php/Open_Source_Wireless_Connectivity_Guide#WLAN_Station
http://processors.wiki.ti.com/index.php/Open_Source_Wireless_Connectivity_Guide#WLAN_SoftAP

More details on WLAN & Bluetooth :

http://processors.wiki.ti.com/index.php/ARM_Processor_Open_Source_Wireless_Connectivity

Cryptography Users Guide:

http://processors.wiki.ti.com/index.php/Cryptography_Users_Guide

Matrix Application launcher

http://processors.wiki.ti.com/index.php/Matrix_Users_Guide

Miscellaneous

http://processors.wiki.ti.com/index.php/DVSDK_4.x_FAQ

http://processors.wiki.ti.com/index.php/Category:OMAPL1

OMAPL138 Software Developers Guide

Wireless LAN, Bluetooth and Crypto 37

http://processors.wiki.ti.com/index.php/ARM_Processor_Open_Source_Wireless_Connectivity
http://processors.wiki.ti.com/index.php/Cryptography_Users_Guide
http://processors.wiki.ti.com/index.php/Matrix_Users_Guide
http://processors.wiki.ti.com/index.php/DVSDK_4.x_FAQ
http://processors.wiki.ti.com/index.php/Category:OMAPL1

	OMAPL138 Software Developers Guide

