РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

2015

OEM модуль EV-NUC972-SODIMM

Ревизия 1.01

Evodbg

ОГЛАВЛЕНИЕ

Используемые сокращения и определения	4
Комплектация	5
Информация для заказа	5
Краткое описание Модуля	5
Структурная схема процессора МСІМХ287	6
Структурная схема модуля EV-iMX287-SODIMM	7
Расположение основных компонентов на плате модуля	8
Габаритные размеры	9
Расположение контактов модуля	9
Система питания	10
Ethernet	10
Память	10
Память NAND Flash	10
Память еММС	10
Память DDR2	11
Интерфейсы I2C	11
Интерфейс JTAG	12
Сигнал SysnWkUp	12
Сигнал SysPWREn	12
Разъем расширения	13
Сигналы используемые внутри модуля	17
Выбор источника загрузки процессора	18
Порты ввода-вывода	18
Питание	18
Интерфейс DUART	18
Интерфейс RS485	19
Подключение Ethernet	20
Интерфейс SD/MMC	22

Микропроцессорный модуль EV-NUC972-SODIMM

Интерфейс USB	22
Интерфейс CAN	24
Аудиоинтерфейс	25
Интерфейс LCD	26
Восстановление ядра и корневой системы	27
Список литературы	31
Ссылки	31
Контакты	31
История исправления документа	31

ИСПОЛЬЗУЕМЫЕ СОКРАЩЕНИЯ И ОПРЕДЕЛЕНИЯ

Сокращение	Обозначение	
ADC	Аналого-Цифровой преобразователь	
ARM	Advanced Risc Machine	
BSP	Board Support Package	
CAN	Controller Area Network	
CPU	Central Processing Unit	
DDR	Double Data Rate	
GPIO	General Purpose Input Output	
12C	Inter Integrated Circuit	
JTAG	Joint Test Action Group	
LCD	Liquid Crystal Display	
Mb	Megabit	
MB	Megabyte	
MMC	Multimedia Card	
NAND		
OTG	On-The-Go	
PHY	Physical	
PWM	Pulse Width Modulation	
RMII	Reduced Media Independent Interface	
RTC	Real Time Clock	
SD	Secure Digital	
SLC	Single Layer Cell	
SPI	Serial Peripheral Interface	
SSI	Synchronous Serial Interface	
UART	Universal Asynchronous Receiver Transmitter	
USB	Universal Serial Bus	
WP	Write Protect	
WVGA	Wide Video Graphics Array	

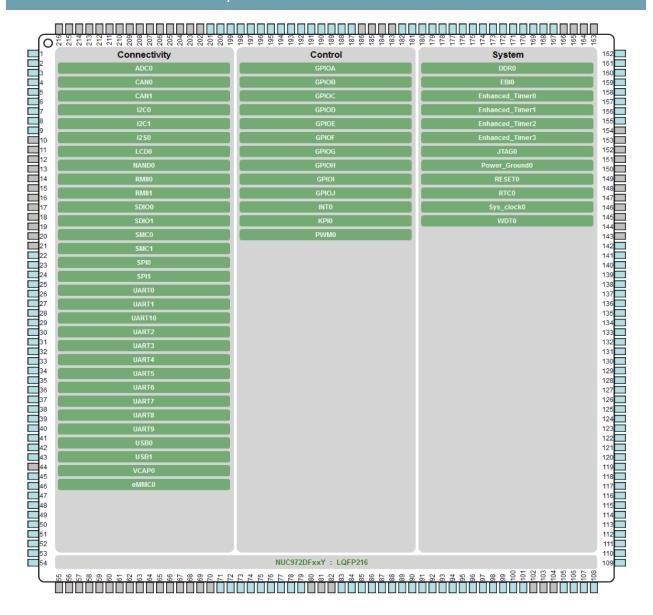
КОМПЛЕКТАЦИЯ

Наименование	Количество
Модуль EV-NUC972-SODIMM-A(1/2)	1

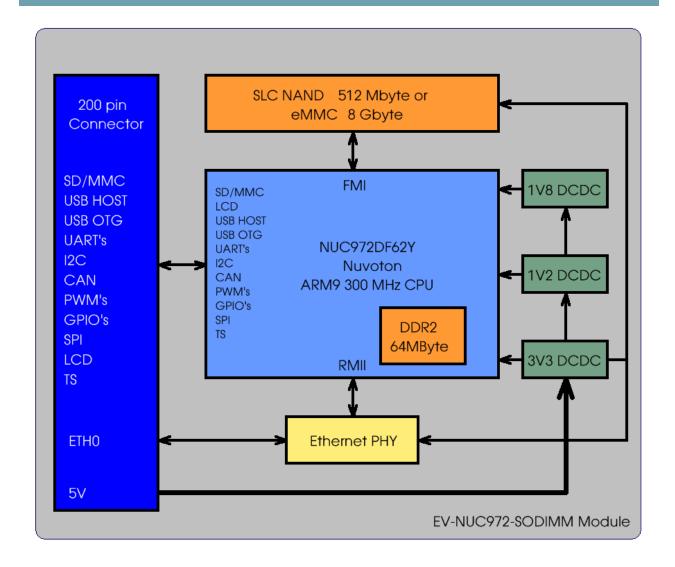
ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

Наименование	Описание
EV-NUC972-SODIMM-A1	NUC972DF62Y, 64MB DDR2, 512MB SLC NAND, -40C+85C
EV-NUC972-SODIMM-A2	NUC972DF62Y, 64MB DDR2, 4 GB eMMC, - 20C+85C

Примечание - по вопросу приобретения других конфигурация обращайтесь на email info@otladka.com.ua

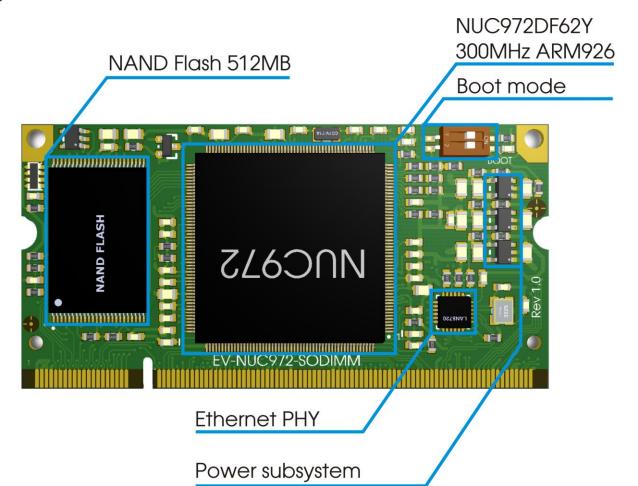

КРАТКОЕ ОПИСАНИЕ МОДУЛЯ.

Микропроцессорный модуль построен на высокопроизводительном процессоре NUC972DF62Y семейства NUC970 с ядром ARM926 компании Nuvoton. Частота процессора 300 МГц. Отличительной особенностью данного процессора является наличие встроенной памяти DDR2 объемом 64 Мбайта. Модуль EV-NUC972-SODIMM выпускается в индустриальном варианте (-40 $^{\circ}$ C...+85 $^{\circ}$ C) с микросхемой памяти NAND Flash и коммерческом (-20 $^{\circ}$ C...+85 $^{\circ}$ C) с микросхемой памяти е-ММС. Формат модуля - плата в формате SODIMM 1.8V.

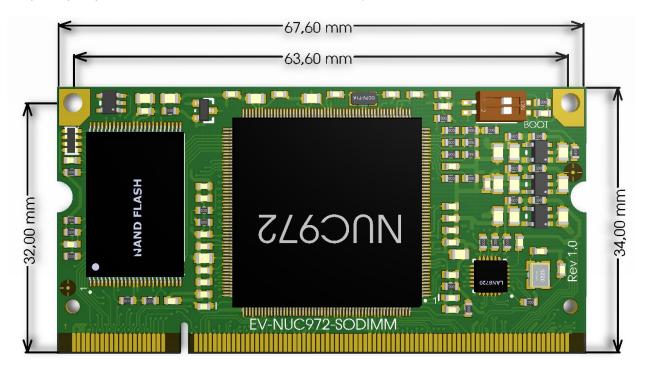

Особенности:

- Процессор NUC972DF62Y
- Память SLC NAND Flash S34ML04G100 512 МВ или аналогичная (опционально)
- ¶Память е-ММС объемом 4 GB (опционально)
- Микросхема PHY Ethernet LAN8720AI
- 200 контактов на которые выведены сигналы процессора
- Напряжение питания модуля 5В
- Средний ток потребления 200 мА
- Габаритные размеры 67,6*34*4 мм
- Вес нетто 8 гр.

СТРУКТУРНАЯ СХЕМА ПРОЦЕССОРА МСІМХ287



СТРУКТУРНАЯ СХЕМА МОДУЛЯ EV-IMX287-SODIMM


РАСПОЛОЖЕНИЕ ОСНОВНЫХ КОМПОНЕНТОВ НА ПЛАТЕ МОДУЛЯ

Вариант с NAND Flash

ГАБАРИТНЫЕ РАЗМЕРЫ

Все размеры приведены в мм. Максимальная высота модуля 4,5 мм.

РАСПОЛОЖЕНИЕ КОНТАКТОВ МОДУЛЯ

Вид сверху, со стороны компонентов.

СИСТЕМА ПИТАНИЯ.

Напряжение питания модуля 5В ($\pm 5\%$). Напряжения 1.8В (питание встроенной в процессор памяти DDR2), 1.2В (питание ядра процессора) и 3.3В (питание микросхем памяти NAND/eMMC) формируется с помощью DCDC преобразователей NCP1521.

ETHERNET

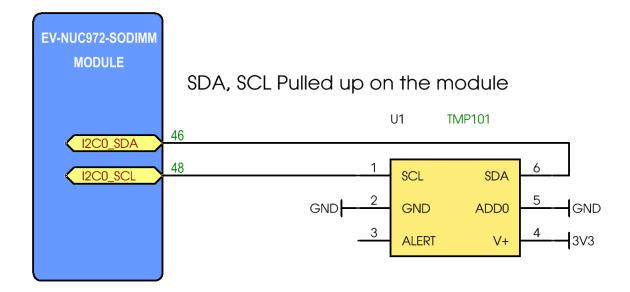
На плате установлена микросхема LAN8720AI (U6) PHY Ethernet 10/100Mb подключенная к процессору интерфейсом RMII0. Линии TX/RX и сигналы управления светодиодами (Link/ACT) выведены на контакты модуля.

ПАМЯТЬ

ПАМЯТЬ NAND FLASH

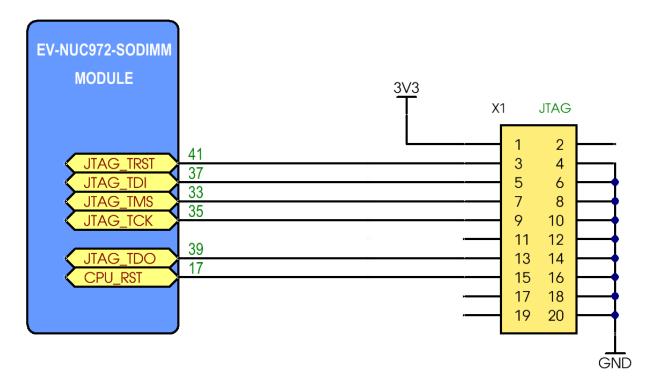
На модуле может быть установлена микросхема SCL NAND Flash памяти (U7), ширина шины 8 бит, объемом 512 МВ. Память подключена к шине FMI, в режиме работы NAND Flash, используется NCSO для выборки и NRDYO для сигнала Busy. Сигнал NWP используется как сигнал управления защитой от записи в NAND Flash.

ПАМЯТЬ ЕММС


На модуле может быть установлена микросхема памяти e-MMC (U5) объемом 4(8) Гбайт. Данная микросхема подключена к шине FMI процессора в режиме работы eMMC , ширина шины 4 бит.

ПАМЯТЬ DDR2

Процессор имеет встроенную память DDR2 размером 64 Мбайта. Максимальная частота интерфейса памяти 150 МГц.


ИНТЕРФЕЙСЫ 12С

Шина I2C0 подтянута на модуле к 3.3В резисторами 2К2. Сигналы интерфейса I2C1 не подтянуты.

ИНТЕРФЕЙС JTAG

Сигналы интерфейса JTAG процессора выведены на разъем модуля.

СИГНАЛ SYSNWKUP

Сигнал пробуждения процессора. Имеет внутреннюю подтяжку.

СИГНАЛ SYSPWREN

Сигнал управления (вкл/выкл) внешним DCDC преобразователем. На модуле управляем включением DCDC преобразователей U2, U4. Преобразователь U3 (формирующий напряжение 1.8B) включается после появления напряжения 3.3B

РАЗЪЕМ РАСШИРЕНИЯ

Таблица 1: Назначение контактов модуля:

Вывод модуля	MUX1	MUX2	MUX3	MUX4	MUX5	GPIO	Вывод CPU
1	VIN 5V						
2	VIN 5V						
3	VIN 5V						
4	VIN 5V						
5	VIN 5V						
6	VIN 5V						
7	GND						
8	GND						
9	SPIO_CLK					PB.7	112
10	NAND_RDY1	UART7_RXD	SPI1_DATA3			PG.5	122
11	SPIO_SSO	0711(17_10\D	5111_5711715		_	PB.6	111
12	NAND_nCS1	UART7_TXD	SPI1_DATA2			PG.4	121
13	SPIO_DO	G/11(17_17(B	5111_5711712		_	PB.8	113
14	UART10_CTS	SPI1_DI				PB.15	120
15	SPIO_DI	5111 <u>-</u> 51			_	PB.9	114
16	UART10_RTS	SPI1_DO				PB.14	119
17	nRESET	3111_50				1 5,17	143
18	UARTO_TXD					PE.0	182
19	VBAT					1 2.0	66
20	UARTO_RXD					PE.1	181
21	SD0_DAT0					PD.2	157
22	JDO_DATO				_	10.2	137
23	SD0_DAT1				_	PD.3	158
24	JDU_DATT				_	FD.3	130
25	SD0_DAT2				_	PD.4	159
26	UART2_TXD	TM2_TGL	INT0		_	PF.11	25
27	SD0_DAT3	TMZ_TGL	11410		_	PD.5	160
28	UART2_RXD	TM2_CAP	INT1		_	PF.12	24
29	SD0_CMD	TMZ_CAP	IINI I		_	PD.0	155
30	UART6_TXD	PWM0	TM0_TGL		_	PB.2	107
31	SD0_CLK	F VV/VIO	TMO_TGL		_	PD.1	156
32	UART6_RXD	PWM1	TM0_CAP		_	PB.3	108
33	JTAG_TMS	F VV/V(1	TMU_CAF		_	PJ.1	140
34	UART10_RXD	SPIO_DATA3	CAN0_TXD		_	PB.11	116
35	JTAG_TCK	JF10_DATAS	CANO_IAD		_	PJ.0	139
36	UART10_TXD	SPI0_DATA2	CANO_RXD			PB.10	115
37		3PIU_DATAZ	CANU_KAD			PJ.2	141
	JTAG_TDI	LIADTO CTC	CAN1 TVD	EBI nBE1			85
38	KPI_COL7	UART8_CTS	CAN1_TXD	EDI_IIBE I		PH.15 PJ.3	138
40	JTAG_TDO	LIADTO DTC	CANIL DVD	EBI_nBE0			
41	KPI_COL6	UART8_RTS	CAN1_RXD	EDI_IIBEU		PH.14	84 142
	JTAG_nTRST	CDI1 CCO				PJ.4	
42 43	UART10_TXD	SPI1_SS0				PB.12 PE.13	117 169
	UART8_CTS	UART3_RXD					
44	UART10_RXD	SPI1_CLK				PB.13	118
45	UART8_RTS	UART3_TXD				PE.12	170
46	I2CO_SDA					PG.1	3
47	GND					DC 0	4
48	12C0_SCL	LIADTE DVD	CDI4 CC4	TM4 C+5		PG.0	4
49	NAND_RDY1	UART5_RXD	SPI1_SS1	TM1_CAP		PB.1	106

50	I2C1 SCL	UART9_TXD	CAN0_RXD	PWM2	INT2	PH.2	168
51	NAND_nCS1	UART5_TXD	SPIO_SS1	TM1_TGL	11112	PB.0	105
52	I2C1_SDA	UART9_RXD	CANO_TXD	PWM3	INT3	PH.3	167
53							
33	VCAP_DATA7	NAND_DATA7	UART8_CTS	SCO_CD	EBI_DATA	PI.15	101
54	GND						
55	VCAP_DATA6	NAND_DATA6	UART8_RTS	SC0_PWR	EBI_DATA 14	PI.14	100
56	RMII1_MDIO	SD1_CLK	UART1_RXD			PE.3	179
57	VCAP_DATA5	NAND_DATA5	UART8_RXD	SC0_DAT	EBI_DATA 13	PI.13	99
58	RMII1_MDC	SD1_CMD	UART1_TXD			PE.2	180
59	VCAP_DATA4	NAND_DATA4	UART8_TXD	SC0_CLK	EBI_DATA 12	PI.12	98
60	I2C1_SCL					PG.2	2
61	VCAP_DATA3	NAND_DATA3	SC0_RST	EBI_DATA11		PI.11	97
62	I2C1_SDA					PG.3	1
63	VCAP_DATA2	NAND_DATA2	eMMC_DATA 2	SC1_CD	EBI_DATA 10	PI.10	96
64	RMII1_REFCLK	SD1_DAT3	UART1_DSR			PE.7	175
65	VCAP_DATA1	NAND_DATA1	eMMC_DATA 1	SC1_PWR	EBI_DATA 9	PI.9	95
66	RMIIO_TXEN					PF.4	192
67	VCAP_DATA0	NAND_DATA0	eMMC_DATA 0	SC1_DAT	EBI_DATA 8	PI.8	94
68	RMIIO_CRSDV					PF.8	188
69	VCAP_FIELD	NAND_RDY0	eMMC_DATA 3	SC1_CLK	EBI_DATA 7	PI.7	93
70	RMII1_RXDATA 0	SD1_nCD	UART1_RI			PE.8	174
71	VCAP_VSYNC	NAND_nRE	eMMC_CLK	SC1_RST	EBI_DATA 6	Pl.6	92
72	RMII1_RXDATA 1	SD1_nPWR	UART1_CD			PE.9	173
73	VCAP_HSYNC	NAND_nWE	eMMC_CMD	EBI_DATA5		PI.5	91
74	RMII1_TXDATA 1	SD1_DAT1	UART1_CTS			PE.5	177
75	VCAP_PCLK	NAND_CLE	I2C1_SDA	EBI_DATA4		PI.4	90
76	RMII1_TXDATA 0	SD1_DAT0	UART1_RTS			PE.4	178
77	VCAP_CLKO	NAND_ALE	I2C1_SCL	EBI_DATA3		PI.3	89
78	I2S_LRCK	UART6_CTS	SCO_CD	CLK_OUT		PG.14	5
79	EBI_DATA0					PI.0	86
80	I2S_DO	UART6_TXD	SC0_CLK			PG.11	8
81	NC						
82	I2S_DI	UART6_RXD	SC0_DAT			PG.12	7
83						PD.7	162
84	I2S_BCLK	UART6_RTS	SC0_PWR			PG.13	6
85	SD0_nCD					PD.6	161
86	I2S_MCLK	SC0_RST				PG.10	9
87	GND						
88	GND						
89	SYS_PWREN						67
90	UART6_CTS					PB.5	110
91	SYS_nWAKEUP						68
92	UART6_RTS					PB.4	109
93	NC						
94	NC						
95	NC						

96	NC	I		1		1	
96	GND						
98	עאט						
99							
100	ADC2						64
100	ADCZ						04
101	ADC2						(2
	ADC3						63
103	ADC 4						F.7
104	ADC4						57
105	1067						(0)
106	ADC7						60
107	1000						
108	ADC5						61
109							
110	ADC6						56
111							
112	ADC0						55
113							
114	ADC1						62
115	GND						
116	NC						
117	KPI_COL5	SD1_nPWR	UART8_RXD	SPI1_SS1	EBI_ADDR	PH.13	83
					9		
118	NC						
119	KPI_COL4	SD1_nCD	UART8_TXD	SPI0_SS1	EBI_ADDR	PH.12	79
					8		
120	NC						
121	KPI_COL3	SD1_DAT3	UART4_CTS	EBI_ADDR7		PH.11	78
122	NC						
123	KPI_COL2	SD1_DAT2	UART4_RTS	EBI_ADDR6		PH.10	77
124	NC						
125	KPI_COL1	SD1_DAT1	UART4_RXD	EBI_ADDR5		PH.9	76
126	NC						
127	KPI_COL0	SD1_DAT0	UART4_TXD	EBI_ADDR4		PH.8	75
128	NC						
129	KPI_ROW3	SD1_CLK	UART1_CTS	EBI_ADDR3	INT7	PH.7	74
130	NC						
131	KPI_ROW2	SD1_CMD	UART1_RTS	EBI_ADDR2	INT6	PH.6	73
132	NC						
133	KPI_ROW1	UART1_RXD	EBI_ADDR1	INT5		PH.5	72
134	NC	_					
135	KPI_ROW0	UART1_TXD	EBI_ADDR0	INT4		PH.4	71
136	NC _	_	_				
137	NC						
138	NC						
139	USB1_DM						206
140	GND						
141	USB1_DP						207
142	LCD_DEN					PG.9	26
143	NC					. 0.7	
144	LCD_VSYNC					PG.8	27
145	NC					. 0.0	
146	LCD_HSYNC					PG.7	28
147	NC					1 3.7	20
147	RMIIO_RXDATA	LCD_DATA7	KPI_ROW3	PWRON_SET		PA.7	47
	1	LCU_DATA/	VLI_KOM2	7		ra./	47
149	NC						

450	DALLIO DVDATA	LCD DATA	I/DL DOW/2	DWDON CET	B. (40
150	RMIIO_RXDATA	LCD_DATA6	KPI_ROW2	PWRON_SET	PA.6	48
151	USBO_DM			6		212
152	RMIIO_REFCLK	LCD_DATA5	KPI_ROW1	PWRON_SET	PA.5	49
132	KMIIU_KLI CLK	LCD_DATAS	KFI_KOWI	5	rA.J	47
153	USB0_DP			3		213
154	RMIIO_TXEN	LCD_DATA4	KPI_ROW0	PWRON_SET	PA.4	50
				4		
155	NC					
156	RMIIO_TXDATA	LCD_DATA3	PWRON_SET		PA.3	51
	1		3			
157	USB0_ID					216
158	RMIIO_TXDATA	LCD_DATA2	PWRON_SET		PA.2	52
159	0 VOUT_3V3		2			
160	RMIIO_MDIO	LCD_DATA1	PWRON_SET		PA.1	53
100	KMIIU_MDIO	LCD_DATAT	1		rA.I	J3
161	ETH0_LED1	Сигнал	1			
		LAN8720				
162	RMII0_MDC	LCD_DATA0	PWRON_SET		PA.0	54
			0			
163	ETH0_LED0	Сигнал				
		LAN8720				
164	LCD_DATA15	KPI_COL7	PWM3		PA.15	38
165	VOUT_3V3	I/DL COL	DWWA		D) 11	20
166	LCD_DATA14	KPI_COL6	PWM2		PA.14	39
167	ETH0_TX_P	Сигнал LAN8720				
168	LCD_DATA13	KPI_COL5	PWM1		PA.13	40
169	ETHO_TX_N	Сигнал	1 *******		17.13	40
107	21110_17(_11	LAN8720				
170	LCD_DATA12	KPI_COL4	PWM0		PA.12	41
171	ETH0_RX_P	Сигнал				
		LAN8720				
172	LCD_DATA11	KPI_COL3			PA.11	42
173	ETH0_RX_N	Сигнал				
174	LCD_DATA10	LAN8720			PA.10	43
174	UART2_CTS	KPI_COL2 TM3_CAP	INT3		PA. 10 PF.14	22
176	RMIIO_RXERR	LCD_DATA9	KPI_COL1	PWRON_SET	PA.9	45
170	IOMIIO_IOALINI	LCD_DATA9	KFI_COL1	9	FA.7	45
177	UART2_RTS	TM3_TGL	INT2		PF.13	23
178	RMIIO_CRSDV	LCD_DATA8	KPI_COL0	PWRON_SET	PA.8	46
				8		
179	NAND_nWP	UART7_RXD	EBI_DATA2	INT7	PI.2	88
180	LCD_DATA23	UART9_RXD	PWM3	EBI_nWAIT	PD.15	30
181	NAND_nCS0	UART7_TXD	EBI_DATA1	INT6	PI.1	87
182	LCD_DATA22	UART9_TXD	PWM2	EBI_nOE	PD.14	31
183	GND	51444				
184	LCD_DATA21	PWM1	EBI_nWE		PD.13	32
185	USB1_PWREN	LIADTO DVD	DWA	EDL =CC4	PE.15	200
186	LCD_DATA20	UART9_RXD	PWM0	EBI_nCS4	PD.12	33 201
187 188	USB0_PWREN LCD_DATA19	UART9_TXD	EBI_nCS3		PE.14 PD.11	34
189	USB0_VBUSVL	INTO	EDI_IIC33		PD.11	198
107	D D	INTO			PH.U	170
190	LCD_DATA18	EBI_nCS2			PD.10	35
191	VCC_3V3				1 5.10	
192	LCD_DATA17	EBI_nCS1			PD.9	36

Микропроцессорный модуль EV-NUC972-SODIMM

193	VCC_3V3				
194	LCD_DATA16	EBI_nCS0		PD.8	37
195	USB_PWREN			PF.10	199
196	GND				
197	USB_OVRCUR	INT1		PH.1	197
198	LCD_CLK			PG.6	29
199	GND				
200	GND				

СИГНАЛЫ ИСПОЛЬЗУЕМЫЕ ВНУТРИ МОДУЛЯ

Таблица 2: Используемые выводы процессора внутри модуля

Вывод процессора	Наименование	Используется	Выведен на внешний разъем
196	RMII0_MDC	LAN8720	Нет
195	RMII0_MDIO	LAN8720	Нет
188	RMII0_CRSDV	LAN8720	Нет
190	RMII0_RXD0	LAN8720	Нет
189	RMII0_RXD1	LAN8720	Нет
192	RMIIO_TXEN	LAN8720	Нет
194	RMII0_TXD0	LAN8720	Нет
193	RMII0_TXD1	LAN8720	Нет
1	RESET LAN8720	LAN8720	62 контакт
191	RMIIO_REFCLK	LAN8720	Нет
123	ND_D0	NAND Flash	Нет
124	ND_D1	NAND Flash	Нет
125	ND_D2	NAND Flash	Нет
126	ND_D3	NAND Flash	Нет
127	ND_D4	NAND Flash	Нет
128	ND_D5	NAND Flash	Нет
129	ND_D6	NAND Flash	Нет
130	ND_D7	NAND Flash	Нет
137	NWP	NAND Flash	Нет
133	NCLE	NAND Flash	Нет
132	NALE	NAND Flash	Нет
134	NWE	NAND Flash	Нет
135	NRE	NAND Flash	Нет
131	NCS0	NAND Flash	Нет
136	NRDY0	NAND Flash	Нет
67	SysPWREn	Управление DCDC	89 контакт
68	SysnWkUp	Вход включения DCDC	91 контакт

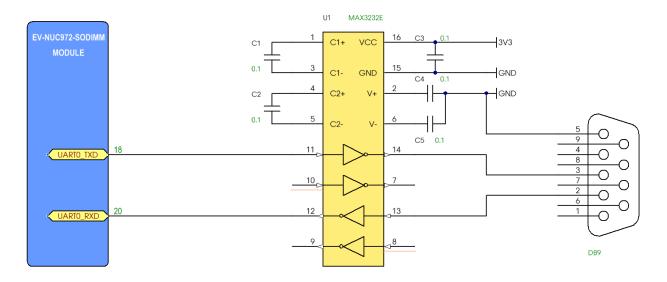
ВЫБОР ИСТОЧНИКА ЗАГРУЗКИ ПРОЦЕССОРА

Источник загрузки определяется при сбросе процессора. За выбор источника отвечают уровни на выводах PAO/PA1. На модуле предусмотрен DIP SWITCH переключатель, с помощью которого производится выбор источника загрузки.

Таблица 3: Выбор источника загрузки процессора

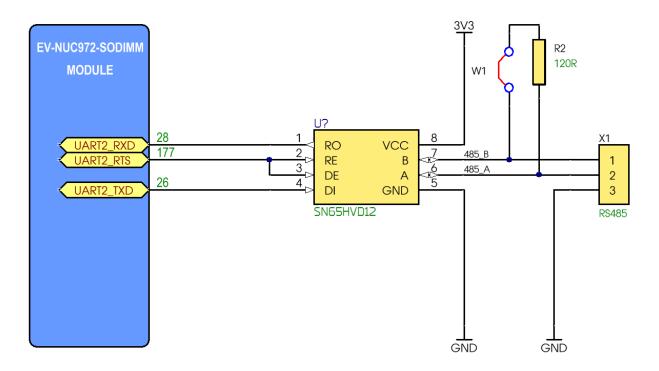
Источник	PA0 (DipSwitch1)	PA1(DipSwitch2)
USB	On	On
NAND Flash	On	Off
еммс	Off	On
SPI Flash	Off	Off

ПОРТЫ ВВОДА-ВЫВОДА


Все сигналы модуля (кроме дифференциальных пар) имеет 3.3В уровни. Для подключения к 1.8В/5.0В периферии используйте преобразователи уровней.

ПИТАНИЕ

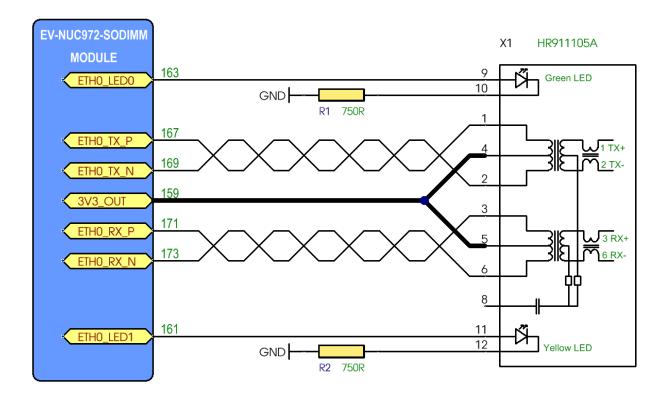
Для питание модуля используется напряжение 5В. На выводы модуля 1,2,3,4,5,6 необходимо подать 5В. Земляные выводы 7,8,47,54,87,88,97,115,140,183,196,199,200 должны быть подключены к земле. На плате модуля имеется DCDC преобразователь с выходным напряжением 3.3В, который используется для питания микросхемы Ethernet PHY, NAND модуля. Данное напряжение присутствует на выводах модуля 159,165 и может быть использовано для питания слаботочных схем вашей платы.


ИНТЕРФЕЙС DUART

Для отладки используется отладочный порт UARTO. Выход UARTO_TXD (вывод 18 модуля) и вход UARTO_RXD (вывод 20 модуля) может быть подключен к микрохеме MAX3232 (или аналогичной) в типовой схеме включения. Возможно использование любых микросхем UART-USB переходников (FT232, PL2303 и т.п.).

ИНТЕРФЕЙС RS485

Сигналы UART могут быть использованы для организации интерфейса RS485. Сигнал UART_RTS используется для управления приемом/передачей данных.


ПОДКЛЮЧЕНИЕ ETHERNET

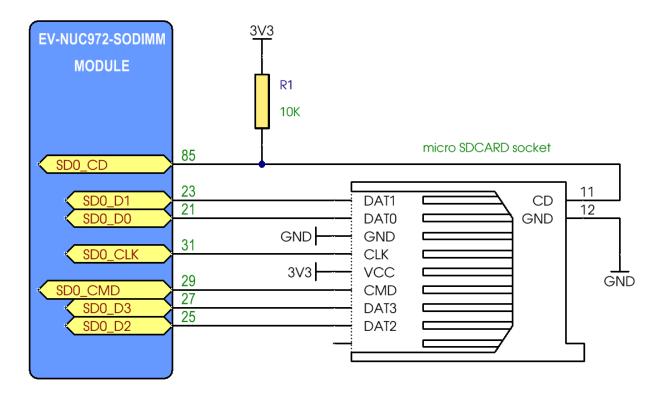
На плате модуля установлена микросхема физического уровня (Ethernet PHY) LAN8720A. Дифференциальные пары RX/TX и сигналы управления светодиодами выведены на разъем. Для уменьшения занимаемого места рекомендуется использовать разъемы RJ-45 со встроенными трансформаторами, например, HR911105A. Также можно использовать комплект трансформатор, например H1102 и разъем RJ-45.

Таблица 6:

Номер вывода модуля	Вывод разъема НR911105А	Обозначение сигнала
167	1	TX+
169	2	TX-
171	3	RX+
172	6	RX-
183	8	GND
165	4,5	3.3B
163	9	LED0
161	11	LED1
	10	Через резистор 510R к GND
	12	Через резистор 510R к GND

Внимание! Не изменяйте схему и полярность подключения светодиодов, т.к. выводы LED0/LED1 используются при сбросе как конфигурационные для микросхемы LAN8720.

На платах с процессором NUC972DF62Y возможно подключение второго интерфейса Ethernet. Микросхема PHY, например LAN8720 может быть подключена к сигналам RMII интерфейса RMII1, которые выведены на разъемы. Таблица подключения приведена ниже:

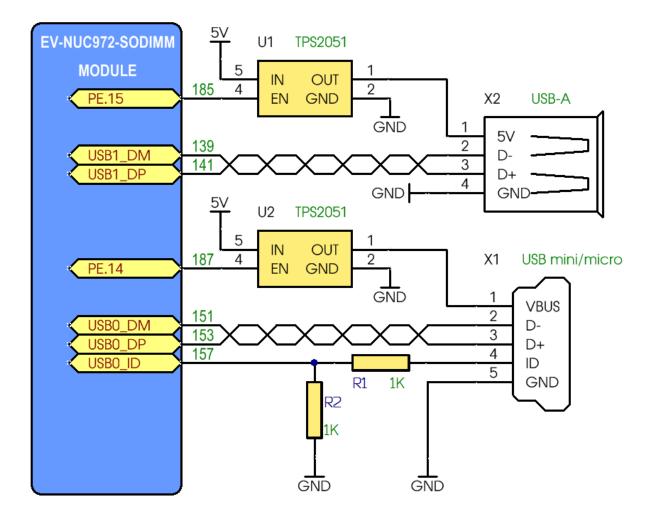

Таблица 7:

Номер вывода модуля	Вывод микрохемы LAN8720	Обозначение сигнала
62	15	ENET1_RST
76	17	ENET1_TXD0
74	18	ENET1_TXD1
70	8	ENET1_RXD0
72	7	ENET1_RXD1
68	11	ENET1_RX_EN
66	16	ENET1_TX_EN
64	5	ENET1_CLK
60	14	ENET1_INT
56	12	ENET1_MDIO
58	13	ENET1_MDC

Внимание! При подключении второй микросхемы Ethernet PHY задайте ей адрес 01, подтянув вывод RXER/PHYAD0 к 3.3B. Адрес 00 используется в установленной на плате модуля микросхеме LAN8720.

ИНТЕРФЕЙС SD/MMC

Для подключения карт памяти SD/MMC может быть использован интерфейс SDO.


ИНТЕРФЕЙС USB

На контакты модуля выведены сигналы двух интефейсов USB. USB0 может быть использован как Host/Device, USB1 только как HOST.

Таблица 8:

Номер вывода модуля	Обозначение сигнала	Примечание
153	USB0_D+	
151	USB0_D-	
157	USB0_ID	Используйте подтяжку через резистор 1К к 3.3В чтобы принудительно перевести в режим Device. Используйте подтяжку через резистор 1К к GND чтобы принудительно перевести в режим HOST.
197	USB_OVC	
141	USB1_D+	
139	USB1_D-	

К сигналу USB_OVC могут быть подключены выходы сигналов «Перегрузка» (Overcurrent) ключей (например TPS2051) коммутирующих 5В, подаваемые на разъемы USB. В предоставляемой BSP для управления питанием используются сигналы PE.14 (вывод модуля 187) и PE.15 (вывод модуля 185).

ИНТЕРФЕЙС CAN

На платах с установленным процессором NUC972DF62Y возможно использование двух интерфейсов CAN. Вы можете использовать любые 3.3B трансиверы CAN шины, например MAX3051, 65HVD230 и $\tau.n.$

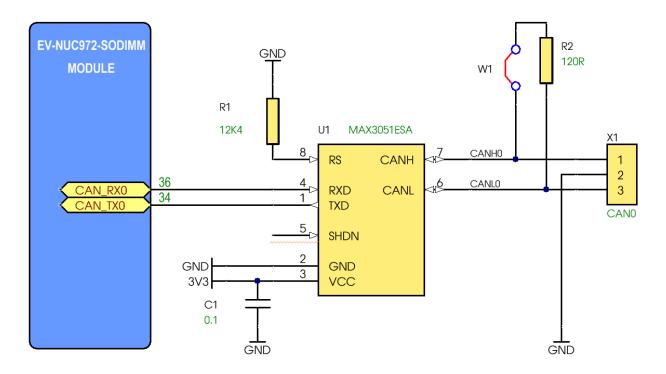


Таблица 9:

Номер вывода модуля	Обозначение сигнала
34	CAN0_TX
36	CANO_RX
38	CAN1_TX
40	CAN1_RX

АУДИОИНТЕРФЕЙС

Стандартные сигналы I2S интерфейса DIN, DOUT, MCLK, BCLK, WCLK и интерфейса I2C SDA, SCL выведены на контакты модуля. Рекомендуем использовать недорогой аудиокодек NAU8822 производства компании Nuvoton.

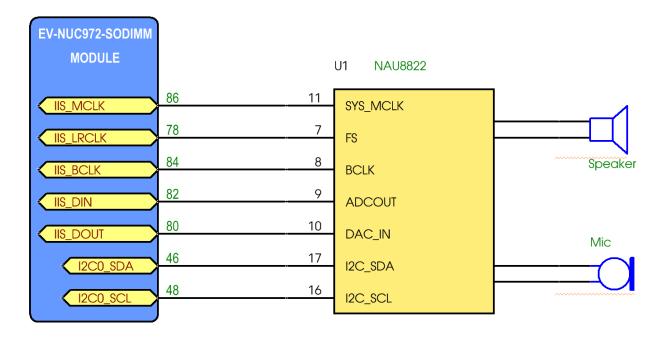
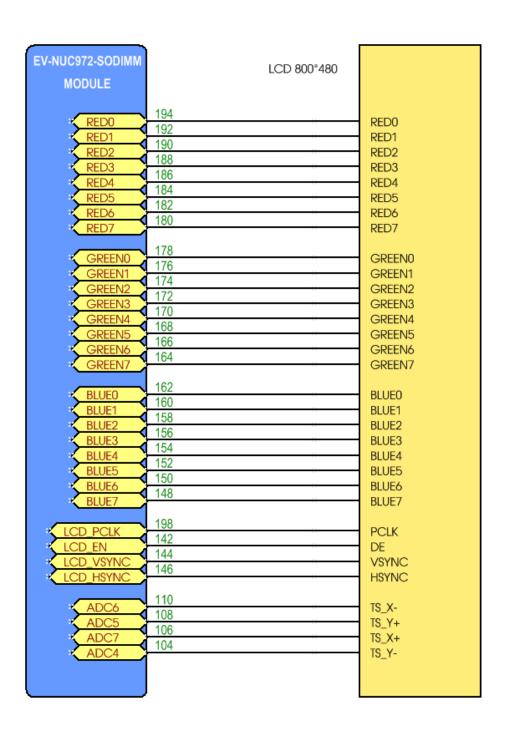



Таблица 10:

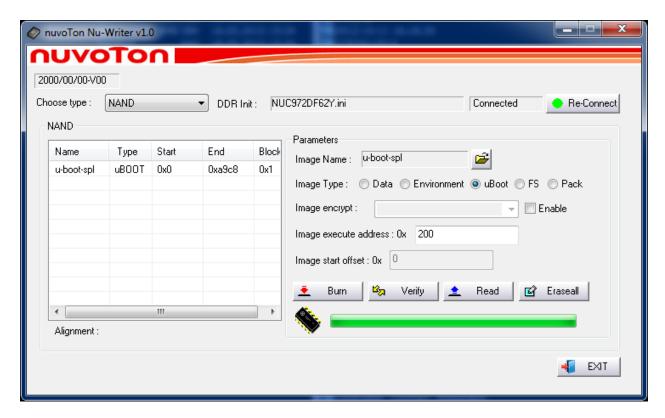
Номер вывода модуля	Номер вывода SGTL5000 (32- выводной корпус)	Обозначение сигнала
86	11	SAIF0_MCLK
78	7	SAIF0_LRCLK
84	8	SAIF0_BITCLK
80	10	SAIF1_SDATA0
82	9	SAIF0_SDATA0
48	29	I2C0_SCL
46	27	I2C0_SDA

ИНТЕРФЕЙС LCD

Стандартный интерфейс позволяет подключать любые TFT панели по RGB интерфейсу с максимальным разрешением 1024*768 пикселей. Для подключения резистивной сенсорной панели может быть использован встроенный в процессор АЦП.

ВОССТАНОВЛЕНИЕ ЯДРА И КОРНЕВОЙ СИСТЕМЫ

Если микросхема NAND Flash не запрограммирована, то при подключении модуля к компьютеру интерфейсом USB0 он автоматически перейдет в режим загрузки по USB (Сигнал USB0_ID должен быть подтянут к 3.3V (режим Device)). Также, с помощью DIP SWITCH можно установить режим загрузки по USB (On/On). С помощью программы Nuwriter можно записать загрузчик u-boot и ядро операционной системы Linux.


- 1. Распаковываем на компьютере архив EV-NUC972-SODIMM-NAND-images.zip
- 2. Запускаем файл WinUSB4NuVCOM_NUC970.exe для установки драйвера
- 3. Устанавливаем на модуле EV-NUC972-SODIMM DIP-SWITCH в положение Off/Off (Загрузка по USB)
- 4. Подключаем USB кабель в порт USBO материнской платы (верхний разъем)
- 5. Убираем перемычку с USB ID
- 6. Подаем питание на плату
- 7. На компьютере запускаем программу NuWriter/bin/NuWriter.exe

8. В выпадающем списке Choose type выбираем NAND

Запись u-boot

- 9. Выбираем файл **u-boot-spl.bin**, устанавливаем Image Type **uBoot** и Image execute address **200**
- 10. Нажимаем **Burn**

- 11. Выбираем файл u-boot.bin, устанавливаем Image Type Data и Image start offset 100000
- 12. Нажимаем **Burn**

Запись ядра

13. Выбираем файл ulmage, устанавливаем Image Type - Data и Image start offset 200000

14. Нажимаем Burn

Запись файловой системы ubi

- 15. Копируем файл rootfs.ubi на USB Flash Drive
- 16. Подключаем переходник USB-UART и запускаем терминальную программу, например PuTTY
- 17. Вставляем USB Flash Drive в материнскую плату и подаем питание
- 18. После старта u-boot выполняем следующие команды:
- NUC972 U-Boot>nand erase.part user; стираем раздел user
- NUC972 U-Boot>usb start; сканируем USB устройства
- NUC972 U-Boot>fatload usb 0 0x7fc0 rootfs.ubi; копируем файл rootfs.ubi в ОЗУ
- NUC972 U-Boot>nand write.trimffs 0x7fc0 user \$filesize; записываем файл в раздел user
- 19. Нажимаем кнопку сброса, в терминальной программе должен быть виден процесс загрузки ядра и монтирования файловой системы.

Описанный способ записи файловой системы подходит для файлов небольшого размера, поскольку размер ОЗУ модуля 64 Мбайта. Для записи файловой системы большого размера можно воспользоваться другим способом. Выполняем пункты с 1 по 14. На USB Flash Drive копируем архив файловой системы rootfs_sodimm.tar и файл ulmage_nand_cpio (это собранное ядро с встроенной файловой системой).

- 20. Вставляем USB Flash Drive в порт USB0
- 21. Подаем питание
- 22. Прерываем загрузку u-boot нажатием любой кнопки
- 23. Выполняем следующие команды:
- NUC972 U-Boot>nand erase.part user; стираем раздел user
- NUC972 U-Boot>usb start; сканируем USB устройства
- NUC972 U-Boot>fatload usb 0 0x7fc0 ulmage_nand_cpio; копируем ядро ОЗУ

Микропроцессорный модуль EV-NUC972-SODIMM

• NUC972 U-Boot>bootm 0x7fc0; запускаем ядро

После загрузки ядра входим в систему login - root, Password - root и выполняем команды

- mkdir /mnt/temp
- mount /dev/sda1 /mnt/temp
- ubidetach /dev/ubi_ctrl -d 0
- mkdir /mnt/nand
- ubiformat /dev/mtd2
- ubiattach /dev/ubi_ctrl -m 2
- ubimkvol /dev/ubi0 -N rootfs -m
- mount -t ubifs ubi0:rootfs /mnt/nand
- cd /mnt/nand
- tar xvf /mnt/temp/rootfs_sodimm.tar > /dev/nullsync
- sync
- cd ../
- umount /mnt/nand
- reboot

СПИСОК ЛИТЕРАТУРЫ

Ссылка	Описание
NUC970_Datasheet_Rev1.0	NUC970 Datasheet
NUC970_Programming_Guide	NUC970 Руководство по программированию
S34ML04G100 NAND Flash	NAND Flash Datasheet
LAN8720A Ethernet PHY	Ethernet PHY
Sch компонент модуля (Altium)	Откройте проект в Altium Designer, откройте схему и выполните Design - Make Schematic Library
PCB компонент модуля (Altium)	Откройте проект в Altium Designer, откройте PCB и выполните Design - Make PCB Library
Проект материнской платы для модуля (Altium)	
Принципиальная схема материнской платы (pdf)	

ссылки

Продажа в Украине http://otladka.com.ua

Продажа в России http://www.starterkit.ru

Wiki http://otladka.com.ua/wiki/doku.php?id=ev-imx287

КОНТАКТЫ

03151, Украина, г. Киев, ул. Молодогвардейская 7Б оф.4

Телефон 380-44-362-25-02

Телефон 380-91-910-68-18

Email: info@starterkit.ru, info@otladka.com.ua

При необходимости изменения дизайна данной платы, обращайтесь на email pcb@evodbg.com

ИСТОРИЯ ИСПРАВЛЕНИЯ ДОКУМЕНТА

17/12/2015 - Начальная ревизия документа 1.0

20/08/2016 - Ревизия 1.01

- Исправлены неточности в таблице 1
- Добавлено описание программирования NAND Flash с помощью программы NuWrite